IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp522-532.html
   My bibliography  Save this article

Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions

Author

Listed:
  • Isaksson, Johan
  • Jansson, Mikael
  • Åsblad, Anders
  • Berntsson, Thore

Abstract

This paper presents a comparison between four gasification-based biorefineries integrated with a pulp and paper mill. It is a continuation of 'Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part A: Heat integration and system performance'. Synthesis into methanol, Fischer-Tropsch crude or synthetic natural gas, or electricity generation in a gas turbine combined cycle, were evaluated. The concepts were assessed in terms of GHG (greenhouse gas) emissions and economic performance. Net annual profits were positive for all biofuel cases for an annuity factor of 0.1 in the year 2030; however, the results are sensitive to biofuel selling prices and CO2,eq charge. Additionally, GHG emissions from grid electricity are highly influential on the results since all biofuel processes require external power. Credits for stored CO2 might be necessary for processes to be competitive, i.e. storage of separated CO2 from the syngas conditioning has an important role to play. Without CO2 storage, the gas turbine case is better than, or equal to, biofuels regarding GHG emissions. Efficiency measures at the host mill prior to heat integration of a gasification process are beneficial from the perspective of GHG emissions, while having a negative impact on the economy.

Suggested Citation

  • Isaksson, Johan & Jansson, Mikael & Åsblad, Anders & Berntsson, Thore, 2016. "Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions," Energy, Elsevier, vol. 103(C), pages 522-532.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:522-532
    DOI: 10.1016/j.energy.2016.02.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    2. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    3. Rey, J.R.C. & Pio, D.T. & Tarelho, L.A.C., 2021. "Biomass direct gasification for electricity generation and natural gas replacement in the lime kilns of the pulp and paper industry: A techno-economic analysis," Energy, Elsevier, vol. 237(C).
    4. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. economics, GHG emissions, technology maturity and production potentials," Energy, Elsevier, vol. 172(C), pages 1312-1328.
    6. Pio, D.T. & Gomes, H.G.M.F. & Tarelho, L.A.C. & Vilas-Boas, A.C.M. & Matos, M.A.A. & Lemos, F.M.S., 2022. "Superheated steam injection as primary measure to improve producer gas quality from biomass air gasification in an autothermal pilot-scale gasifier," Renewable Energy, Elsevier, vol. 181(C), pages 1223-1236.
    7. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:522-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.