IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp202-210.html
   My bibliography  Save this article

Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors

Author

Listed:
  • Zhang, Hulin
  • Xie, Yuhang
  • Li, Xiaomei
  • Huang, Zhenlong
  • Zhang, Shangjie
  • Su, Yuanjie
  • Wu, Bo
  • He, Long
  • Yang, Weiqing
  • Lin, Yuan

Abstract

Wasted heat is one of the most abundant and widely available energy sources in our living environment and industrial activities. A lot of attentions have been paid on harvesting ambient wasted thermal energy. In this work, a flexible PG (pyroelectric generator) based upon a thin PVDF (polyvinylidene fluoride) film has been fabricated. Based on the pyroelectric effect, the PG can harvest thermal energy arising from the time-dependent fluctuating temperature with spatial uniformity. At the temperature change of 50 K, the PG can deliver an open-circuit voltage of 8.2 V and a short-circuit current of 0.8 μA, respectively, with the maximal output power of 2.2 μW on a load of 0.1 MΩ, which can be utilized to directly drive a LCD (liquid crystal display) or LEDs (light emitting diodes), or to charge a commercial capacitor for subsequent usages. Moreover, the PG can be used to construct a self-powered thermosensor as a result of the linear relationship between the output voltage and the temperature change. Our study promotes the development of the PG for scavenging wasted thermal energy and opens up plenty of potential self-powered applications.

Suggested Citation

  • Zhang, Hulin & Xie, Yuhang & Li, Xiaomei & Huang, Zhenlong & Zhang, Shangjie & Su, Yuanjie & Wu, Bo & He, Long & Yang, Weiqing & Lin, Yuan, 2016. "Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors," Energy, Elsevier, vol. 101(C), pages 202-210.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:202-210
    DOI: 10.1016/j.energy.2016.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castro Aguilar, Jose L. & Gentle, Angus R. & Smith, Geoff B. & Chen, Dong, 2015. "A method to measure total atmospheric long-wave down-welling radiation using a low cost infrared thermometer tilted to the vertical," Energy, Elsevier, vol. 81(C), pages 233-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Maoying & Al-Furjan, Mohannad Saleh Hammadi & Zou, Jun & Liu, Weiting, 2018. "A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3582-3609.
    2. Deepak, K. & Pattanaik, M.S. & Ramanujan, R.V., 2019. "Figure of merit and improved performance of a hybrid thermomagnetic oscillator," Applied Energy, Elsevier, vol. 256(C).
    3. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruczek, Tadeusz, 2023. "Conditions for use of long-wave infrared camera to measure the temperature of the sky," Energy, Elsevier, vol. 283(C).
    2. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:202-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.