IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v89y2016icp160-170.html
   My bibliography  Save this article

Assessing emissions levels and costs associated with climate and air pollution policies in South Africa

Author

Listed:
  • Henneman, Lucas R.F.
  • Rafaj, Peter
  • Annegarn, Harold J.
  • Klausbruckner, Carmen

Abstract

Affordable energy supply and reductions in emissions of local air pollution and greenhouse gases are each important aspects of South Africa's goals. Many traditional solutions, however, work in contradiction to one another. This work investigates effects on estimated emissions and costs of mitigation strategies using the Greenhouse Gas and Air Pollution Interaction Synergies (GAINS) model to identify policies that satisfy multiple goals. Eight scenarios that describe air pollution control options and mixes of energy production technologies are implemented in GAINS, which quantifies country-wide air pollution and greenhouse emissions and costs of controls. Emissions and costs trajectories are compared to the business as usual case, which projects CO2 emissions to increase by 60% by 2050 compared to 2015. Results show that replacing all coal generation with renewables reduces CO2 emissions in 2050 by 8% compared to 2015, and that aggressive policy targeting the whole energy sector reduces CO2 emissions in 2050 by 40%. GAINS is used to show co-benefits and tradeoffs of each scenario, such as reductions in emissions control costs that accompany a switch to renewables. The approach provides supporting evidence for policies that exploit co-benefits and avoid contradictions by assessing multiple aspects of the energy sector within the integrated framework provided by the GAINS modeling platform.

Suggested Citation

  • Henneman, Lucas R.F. & Rafaj, Peter & Annegarn, Harold J. & Klausbruckner, Carmen, 2016. "Assessing emissions levels and costs associated with climate and air pollution policies in South Africa," Energy Policy, Elsevier, vol. 89(C), pages 160-170.
  • Handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:160-170
    DOI: 10.1016/j.enpol.2015.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Rafaj & Wolfgang Schöpp & Peter Russ & Chris Heyes & Markus Amann, 2013. "Co-benefits of post-2012 global climate mitigation policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 801-824, August.
    2. Seymore, R. & Inglesi-Lotz, R. & Blignaut, J., 2014. "A greenhouse gas emissions inventory for South Africa: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 371-379.
    3. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.
    4. Ürge-Vorsatz, Diana & Tirado Herrero, Sergio, 2012. "Building synergies between climate change mitigation and energy poverty alleviation," Energy Policy, Elsevier, vol. 49(C), pages 83-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manzoor Ahmad & Shoukat Iqbal Khattak, 2020. "Is Aggregate Domestic Consumption Spending (ADCS) Per Capita Determining CO2 Emissions in South Africa? A New Perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 529-552, March.
    2. AhAtil, Ahmed & Bouheni, Faten Ben & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Factors influencing CO2 Emission in China: A Nonlinear Autoregressive Distributed Lags Investigation," MPRA Paper 91190, University Library of Munich, Germany, revised 02 Jan 2019.
    3. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    4. Zhiguo Li & Jie Wang & Shuai Che, 2021. "Synergistic Effect of Carbon Trading Scheme on Carbon Dioxide and Atmospheric Pollutants," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    5. Zhu, Junpeng & Wu, Shaohui & Xu, Junbing, 2023. "Synergy between pollution control and carbon reduction: China's evidence," Energy Economics, Elsevier, vol. 119(C).
    6. Sofia, Daniele & Gioiella, Filomena & Lotrecchiano, Nicoletta & Giuliano, Aristide, 2020. "Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy," Energy Policy, Elsevier, vol. 137(C).
    7. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    8. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. , Diego, 2017. "The Natural and Infrastructural Capital Elements of Potential Post-Electrification Wealth Creation in Kenya," SocArXiv ddnhz, Center for Open Science.
    2. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    3. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    4. Hou, Mengyang & Cui, Xuehua & Chu, Liqi & Wang, He & Xi, Zenglei & Deng, Yuanjie, 2024. "Nonlinear effects of environmental regulation on PM2.5 and CO2 in China: Evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 292(C).
    5. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    6. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    7. Ye, Yuxiang & Koch, Steven F., 2021. "Measuring energy poverty in South Africa based on household required energy consumption," Energy Economics, Elsevier, vol. 103(C).
    8. Itziar Modrego-Monforte & Mikel Barrena-Herrán & Olatz Grijalba, 2023. "A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices," Land, MDPI, vol. 12(8), pages 1-16, August.
    9. Tongyu Meng & Jamie Newth & Christine Woods, 2022. "Ethical Sensemaking in Impact Investing: Reasons and Motives in the Chinese Renewable Energy Sector," Journal of Business Ethics, Springer, vol. 179(4), pages 1091-1117, September.
    10. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    11. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    12. Arabatzis, Garyfallos & Petridis, Konstantinos & Galatsidas, Spyros & Ioannou, Konstantinos, 2013. "A demand scenario based fuelwood supply chain: A conceptual model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 687-697.
    13. Torero, Maximo, 2014. "The Impact of Rural Electrification," MPRA Paper 61425, University Library of Munich, Germany.
    14. Li, Guozhu & Niu, Shuwen & Ma, Libang & Zhang, Xin, 2009. "Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China," Renewable Energy, Elsevier, vol. 34(6), pages 1438-1444.
    15. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    16. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    17. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    18. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Khalid Waleed & Faisal Mehmood Mirza, 2023. "Examining fuel choice patterns through household energy transition index: an alternative to traditional energy ladder and stacking models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6449-6501, July.
    20. Curran, Franziska & Smart, Simon & Lacey, Justine & Greig, Chris & Lant, Paul, 2018. "Learning from experience in the water sector to improve access to energy services," Utilities Policy, Elsevier, vol. 51(C), pages 41-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:160-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.