IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp261-271.html
   My bibliography  Save this article

The hydrologic and economic feasibility of micro hydropower upfitting and integration of existing low-head dams in the United States

Author

Listed:
  • Sandt, Christopher J.
  • Doyle, Martin W.

Abstract

The integration of hydropower facilities on existing low-head, non-Federal dams and their subsequent tie to regional electricity grids may serve as a useful de-centralized component of renewable energy integration in the United States. Thousands of low-head dams do not provide power and thus present few benefits with significant costs, including safety liability, fragmentation of river ecosystems, and persistent economic burden induced on state agencies due to regular inspection requirements. We conducted a feasibility study in the Piedmont region of North Carolina cataloguing over 1000 non-Federal dams with hydraulic head ranging from 4.6m to 10.7m (15ft to 35ft) and power capacity <300kW (“micro” hydropower). Generation potential, greenhouse gas reductions, and financial viability were refined for 49 low-head dams over a 30-year life cycle using industry standard software (RETScreen4). Results suggest that most of these dams are not financially viable for energy production under cost structures evaluated at the time of this study. However, our results indicate that some low-head dams may be viable for energy production if provided funding opportunities comparable to the concurrent wind and solar markets.

Suggested Citation

  • Sandt, Christopher J. & Doyle, Martin W., 2013. "The hydrologic and economic feasibility of micro hydropower upfitting and integration of existing low-head dams in the United States," Energy Policy, Elsevier, vol. 63(C), pages 261-271.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:261-271
    DOI: 10.1016/j.enpol.2013.08.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosnik, Lea, 2010. "The potential for small scale hydropower development in the US," Energy Policy, Elsevier, vol. 38(10), pages 5512-5519, October.
    2. Kosnik, Lea, 2008. "The potential of water power in the fight against global warming in the US," Energy Policy, Elsevier, vol. 36(9), pages 3252-3265, September.
    3. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    4. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Patsialis & Ioannis Kougias & Nerantzis Kazakis & Nicolaos Theodossiou & Peter Droege, 2016. "Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams," Energies, MDPI, vol. 9(12), pages 1-14, December.
    2. Klein, S.J.W. & Fox, E.L.B., 2022. "A review of small hydropower performance and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo-Chen Wu & Jui-Chu Lin & Wen-Te Chang & Chia-Szu Yen & Huang-Jie Fu, 2023. "Research and Analysis of Promotional Policies for Small Hydropower Generation in Taiwan," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    4. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    5. Hansen, Carly & Musa, Mirko & Sasthav, Colin & DeNeale, Scott, 2021. "Hydropower development potential at non-powered dams: Data needs and research gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Klein, S.J.W. & Fox, E.L.B., 2022. "A review of small hydropower performance and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Paudel, Shakun & Linton, Nick & Zanke, Ulrich C.E. & Saenger, Nicole, 2013. "Experimental investigation on the effect of channel width on flexible rubber blade water wheel performance," Renewable Energy, Elsevier, vol. 52(C), pages 1-7.
    8. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    9. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    10. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    11. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    12. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    13. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    14. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    15. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    16. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    17. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    18. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    19. Hu, Fan & Wu, Yaoyao & Zhou, Lei, 2022. "Irreversible investment and capacity choice with Bayesian learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    20. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.

    More about this item

    Keywords

    Hydropower; Dams; Feasibility;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:261-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.