IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp619-627.html
   My bibliography  Save this article

Feed-in tariff design for domestic scale grid-connected PV systems using high resolution household electricity demand data

Author

Listed:
  • Ayompe, L.M.
  • Duffy, A.

Abstract

The advent of large samples of smart metering data allows policymakers to design Feed-in Tariffs which are more targeted and efficient. This paper presents a methodology which uses these data to design FITs for domestic scale grid-connected PV systems in Ireland. A sample of 2551 household electricity demand data collected at 1/2-hourly intervals, electricity output from a 2.82kWp PV system over the same time interval as well as PV system costs and electricity tariffs were used to determine the required FIT to make it worthwhile for the households to invest in the PV system. The methodology shows that it is possible to design single, multiple and continuous FITs. Continuous FITs are the most efficient and result in no overcompensation to the housholder while single and multiple FITs are less efficient since they result in different levels of overcompensation. In the PV case study considered, it was shown that the use of three FITs (0.3170, 0.3315 and 0.3475€/kWh) resulted in a 59.6% reduction in overcompensation compared to a single FIT of 0.3475€/kWh; assuming immediate and complete uptake of the technology, this would result in NPV savings of over €597m to the Irish government over a 25 year lifetime.

Suggested Citation

  • Ayompe, L.M. & Duffy, A., 2013. "Feed-in tariff design for domestic scale grid-connected PV systems using high resolution household electricity demand data," Energy Policy, Elsevier, vol. 61(C), pages 619-627.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:619-627
    DOI: 10.1016/j.enpol.2013.06.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    2. McHenry, Mark P., 2012. "A technical, economic, and greenhouse gas emission analysis of a homestead-scale grid-connected and stand-alone photovoltaic and diesel systems, against electricity network extension," Renewable Energy, Elsevier, vol. 38(1), pages 126-135.
    3. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    4. Nfah, Eustace Mbaka, 2013. "Evaluation of optimal photovoltaic hybrid systems for remote villages in Far North Cameroon," Renewable Energy, Elsevier, vol. 51(C), pages 482-488.
    5. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    6. Parker, Paul, 2008. "Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1944-1958, September.
    7. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    8. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasi, Silvia, 2022. "The (Non) impact of the Spanish “Tax on the Sun” on photovoltaics prosumers uptake," Energy Policy, Elsevier, vol. 168(C).
    2. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    3. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    4. Hussain Ali Bekhet & Lee Lian Ivy-Yap, 2014. "Highlighting Energy Policies and Strategies for the Residential Sector in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 448-456.
    5. Rossi, Federico & Heleno, Miguel & Basosi, Riccardo & Sinicropi, Adalgisa, 2021. "LCA driven solar compensation mechanism for Renewable Energy Communities: the Italian case," Energy, Elsevier, vol. 235(C).
    6. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    7. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    8. Liu, Cengceng & Li, Nan & Zha, Donglan, 2016. "On the impact of FIT policies on renewable energy investment: Based on the solar power support policies in China's power market," Renewable Energy, Elsevier, vol. 94(C), pages 251-267.
    9. Hirvonen, Janne & Kayo, Genku & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2015. "Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions," Energy Policy, Elsevier, vol. 79(C), pages 72-86.
    10. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    11. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    12. Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Kiavarz, Majid & Alavipanah, Seyed Kazem, 2020. "On the effect of geographical, topographic and climatic conditions on feed-in tariff optimization for solar photovoltaic electricity generation: A case study in Iran," Renewable Energy, Elsevier, vol. 153(C), pages 430-439.
    13. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    14. repec:eco:journ2:2017-04-10 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    2. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    3. Fagiani, Riccardo & Barquín, Julián & Hakvoort, Rudi, 2013. "Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs," Energy Policy, Elsevier, vol. 55(C), pages 648-661.
    4. Walker, S.L., 2012. "Can the GB feed-in tariff deliver the expected 2% of electricity from renewable sources?," Renewable Energy, Elsevier, vol. 43(C), pages 383-388.
    5. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    6. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    7. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    8. Morano, Pierluigi & Tajani, Francesco & Locurcio, Marco, 2017. "GIS application and econometric analysis for the verification of the financial feasibility of roof-top wind turbines in the city of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 999-1010.
    9. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    10. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    11. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    12. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    13. Maria Kopsakangas-Savolainen & Rauli Svento, 2013. "Promotion of Market Access for Renewable Energy in the Nordic Power Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(4), pages 549-569, April.
    14. Miguel Pérez de Arce and Enzo Sauma, 2016. "Comparison of Incentive Policies for Renewable Energy in an Oligopolistic Market with Price-Responsive Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    16. Paul Koutstaal & Michiel Bijlsma & Gijsbert Zwart & X. van Tilburg, 2009. "Market performance and distributional effects on renewable energy markets," CPB Document 190.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    17. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    18. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    19. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    20. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:619-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.