IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v60y2013icp155-166.html
   My bibliography  Save this article

Transmission topologies for the integration of renewable power into the electricity systems of North Africa

Author

Listed:
  • Brand, Bernhard

Abstract

A cost-minimizing electricity market model was used to explore optimized infrastructures for the integration of renewable energies in interconnected North African power systems until 2030. The results show that the five countries Morocco, Algeria, Tunisia, Libya and Egypt could together achieve significant economic benefits, reaching up to €3.4 billion, if they increase power system integration, build interconnectors and cooperate on joint utilization of their generation assets. Net electricity exports out of North Africa to Europe or Eastern Mediterranean regions, however, were not observed in the regime of integrated electricity markets until 2030, and could only be realized by much higher levels of renewable energy penetration than currently foreseen by North African governments.

Suggested Citation

  • Brand, Bernhard, 2013. "Transmission topologies for the integration of renewable power into the electricity systems of North Africa," Energy Policy, Elsevier, vol. 60(C), pages 155-166.
  • Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:155-166
    DOI: 10.1016/j.enpol.2013.04.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513003248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.04.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    2. Brand, Bernhard & Boudghene Stambouli, Amine & Zejli, Driss, 2012. "The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria," Energy Policy, Elsevier, vol. 47(C), pages 321-331.
    3. Brand, Bernhard & Zingerle, Jonas, 2010. "The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets," EWI Working Papers 2010-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    2. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    4. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    5. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    6. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    7. Li, Yanfei & Chang, Youngho, 2015. "Infrastructure investments for power trade and transmission in ASEAN+2: Costs, benefits, long-term contracts and prioritized developments," Energy Economics, Elsevier, vol. 51(C), pages 484-492.
    8. Simoes, Sofia & Nijs, Wouter & Ruiz, Pablo & Sgobbi, Alessandra & Thiel, Christian, 2017. "Comparing policy routes for low-carbon power technology deployment in EU – an energy system analysis," Energy Policy, Elsevier, vol. 101(C), pages 353-365.
    9. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Kost, Christoph & Flath, Christoph M. & Möst, Dominik, 2013. "Concentrating solar power plant investment and operation decisions under different price and support mechanisms," Energy Policy, Elsevier, vol. 61(C), pages 238-248.
    11. Beccarello, Massimo & Di Foggia, Giacomo, 2023. "Meeting decarbonization targets: Techno-economic insights from the Italian scenario," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2.
    12. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    13. Chloi Syranidou & Jochen Linssen & Detlef Stolten & Martin Robinius, 2020. "Integration of Large-Scale Variable Renewable Energy Sources into the Future European Power System: On the Curtailment Challenge," Energies, MDPI, vol. 13(20), pages 1-23, October.
    14. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
    15. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
    16. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    17. Johlas, Hannah & Witherby, Shelby & Doyle, James R., 2020. "Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: A case study," Renewable Energy, Elsevier, vol. 146(C), pages 1315-1324.
    18. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    19. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    20. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:155-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.