IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v53y2013icp114-124.html
   My bibliography  Save this article

Potential impact on air pollution from ambitious national CO2 emission abatement strategies in the Nordic countries – environmental links between the UNFCCC and the UNECE – CLRTAP

Author

Listed:
  • Åström, Stefan
  • Tohka, Antti
  • Bak, Jesper
  • Lindblad, Maria
  • Arnell, Jenny

Abstract

This article presents results from a meta-study of Nordic low carbon dioxide (CO2) emission scenarios. The focus of the study was to explore possible environmental impacts if selected Nordic low CO2 emission scenarios were achieved by 2020. The impacts of concern were climate change, acidification, eutrophication and human health. Results from this study indicate that large scale reduction of CO2 emissions by 2020 in a Nordic energy system requires large scale penetration of technical measures and structural changes. The environmental improvements achieved would most often facilitate achievement of air pollution targets as well as post-Kyoto targets for greenhouse gas (GHG) emissions. All scenarios do, however, not imply co-benefits between air pollution and CO2 emission reductions and the net impact on climate change could be smaller than anticipated. A conclusion is that co-benefits and risks for trade-offs between air quality and climate change should be emphasised in the development of low-CO2 energy and emission strategies.

Suggested Citation

  • Åström, Stefan & Tohka, Antti & Bak, Jesper & Lindblad, Maria & Arnell, Jenny, 2013. "Potential impact on air pollution from ambitious national CO2 emission abatement strategies in the Nordic countries – environmental links between the UNFCCC and the UNECE – CLRTAP," Energy Policy, Elsevier, vol. 53(C), pages 114-124.
  • Handle: RePEc:eee:enepol:v:53:y:2013:i:c:p:114-124
    DOI: 10.1016/j.enpol.2012.10.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512009603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.10.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rypdal, Kristin & Rive, Nathan & Astrom, Stefan & Karvosenoja, Niko & Aunan, Kristin & Bak, Jesper L. & Kupiainen, Kaarle & Kukkonen, Jaakko, 2007. "Nordic air quality co-benefits from European post-2012 climate policies," Energy Policy, Elsevier, vol. 35(12), pages 6309-6322, December.
    2. HELEN ApSIMON & MARKUS AMANN & STEFAN ÅSTRÖM & TIM OXLEY, 2009. "Synergies in addressing air quality and climate change," Climate Policy, Taylor & Francis Journals, vol. 9(6), pages 669-680, November.
    3. van Vuuren, D.P. & Cofala, J. & Eerens, H.E. & Oostenrijk, R. & Heyes, C. & Klimont, Z. & den Elzen, M.G.J. & Amann, M., 2006. "Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe," Energy Policy, Elsevier, vol. 34(4), pages 444-460, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    2. Magdalena Rzemieniak & Monika Wawer, 2021. "Employer Branding in the Context of the Company’s Sustainable Development Strategy from the Perspective of Gender Diversity of Generation Z," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    3. AhAtil, Ahmed & Bouheni, Faten Ben & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Factors influencing CO2 Emission in China: A Nonlinear Autoregressive Distributed Lags Investigation," MPRA Paper 91190, University Library of Munich, Germany, revised 02 Jan 2019.
    4. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    5. Ekholm, Tommi & Karvosenoja, Niko & Tissari, Jarkko & Sokka, Laura & Kupiainen, Kaarle & Sippula, Olli & Savolahti, Mikko & Jokiniemi, Jorma & Savolainen, Ilkka, 2014. "A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies," Energy Policy, Elsevier, vol. 74(C), pages 499-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    2. Shuo Gao & Ping Jiang, 2020. "Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4589-4618, June.
    3. Wagner, Ulrich J. & De Preux, Laure, 2016. "The Co-Benefits Of Climate Policy: Evidence From The Eu Emissions Trading Scheme," VfS Annual Conference 2016 (Augsburg): Demographic Change 145800, Verein für Socialpolitik / German Economic Association.
    4. Rive, Nathan, 2010. "Climate policy in Western Europe and avoided costs of air pollution control," Economic Modelling, Elsevier, vol. 27(1), pages 103-115, January.
    5. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    6. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    7. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    8. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    9. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    10. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    11. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    12. Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017. "“Lock-in” effect of emission standard and its impact on the choice of market based instruments," Energy Economics, Elsevier, vol. 63(C), pages 41-50.
    13. Park, Taeil & Kim, Changyoon & Kim, Hyoungkwan, 2014. "A real option-based model to valuate CDM projects under uncertain energy policies for emission trading," Applied Energy, Elsevier, vol. 131(C), pages 288-296.
    14. Deng, Changzhe & Su, Zhifang & Feng, Yufang, 2024. "Extreme climate and corporate financialization: Evidence from China," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 306-321.
    15. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    16. Jiehui Yuan & Xunmin Ou & Gehua Wang, 2017. "Establishing a Framework to Evaluate the Effect of Energy Countermeasures Tackling Climate Change and Air Pollution: The Example of China," Sustainability, MDPI, vol. 9(9), pages 1-23, September.
    17. Ioannis Tikoudis & Walid Oueslati, 2023. "The future of transport-related emissions in dense urban areas: an analysis of various policy scenarios with MOLES," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 205-268, April.
    18. Rypdal, Kristin & Rive, Nathan & Astrom, Stefan & Karvosenoja, Niko & Aunan, Kristin & Bak, Jesper L. & Kupiainen, Kaarle & Kukkonen, Jaakko, 2007. "Nordic air quality co-benefits from European post-2012 climate policies," Energy Policy, Elsevier, vol. 35(12), pages 6309-6322, December.
    19. Kiula, Olga & Markandya, Anil & Ščasný, Milan & Menkyna Tsuchimoto, Fusako, 2014. "The Economic and Environmental Effects of Taxing Air Pollutants and CO2: Lessons from a Study of the Czech Republic," MPRA Paper 66599, University Library of Munich, Germany, revised Oct 2015.
    20. Johannes Bollen & Corjan Brink, 2012. "Air Pollution Policy in Europe: Quantifying the Interaction with Greenhouse Gases and Climate Change Policies," CPB Discussion Paper 220, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:53:y:2013:i:c:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.