IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp737-747.html
   My bibliography  Save this article

Potential energy savings and reduction of CO2 emissions through higher efficiency standards for polyphase electric motors in Japan

Author

Listed:
  • Ni, Chun Chun

Abstract

Japan has shut down more than 70% of its nuclear power plants since the March 2011 Tohoku earthquake and the ensuing accident at the Fukushima Daiichi nuclear power plant. The country has been challenged with power shortages in the short-term and faces complex energy security decisions in the long-term. Japan has a long history of implementing energy conservation policies, such as the Top Runner Program, which covers 23 products including appliances and industrial equipment. However, Japan's efficiency policy for polyphase electric motors is considered below international standards. Polyphase electric motors accounted for about 55% of the nation's total power consumption in 2008. The aim of this study is to estimate potential energy savings and reduction in CO2 emissions (2014–2043) by examining scenarios involving adopting two different polyphase motor efficiency standards and comparing them to a base case and concludes by suggesting pathways for further policy development using the results obtained. The study finds that if level IE2 of the international efficiency standard IEC 60034-30 were implemented, it would save 8.3TWh (or 0.03 quads) per year, which is equivalent to about 0.8% of Japan's total electric power consumption in 2010. If level IE3 of the IEC 60034-30 were implemented instead, it would save about 13.3TWh (or 0.05 quads) per year. The corresponding cumulative energy savings and reduction in CO2 emissions for the IE2 scenario would be 249TWh (or 0.85 quads) and 93Mt. The corresponding cumulative energy savings and reduction in CO2 emissions for the IE3 scenario would be 398TWh (or 1.36 quads) and 149Mt.

Suggested Citation

  • Ni, Chun Chun, 2013. "Potential energy savings and reduction of CO2 emissions through higher efficiency standards for polyphase electric motors in Japan," Energy Policy, Elsevier, vol. 52(C), pages 737-747.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:737-747
    DOI: 10.1016/j.enpol.2012.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512009160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    2. Shi, Xunpeng, 2015. "Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam," Applied Energy, Elsevier, vol. 157(C), pages 1-12.
    3. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    4. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    5. Memon, Abdul Jabbar & Shaikh, Muhammad Mujtaba, 2016. "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques," Energy, Elsevier, vol. 109(C), pages 592-601.
    6. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:737-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.