IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp773-783.html
   My bibliography  Save this article

What are the costs of Scotland's climate and renewable policies?

Author

Listed:
  • Anandarajah, Gabrial
  • McDowall, Will

Abstract

The UK government has established ambitious policies to address climate change and promote renewable energy, and has set targets both for reducing carbon emissions and for deploying renewables. Scotland, a constituent nation of the UK, has also set its own targets for climate change mitigation and renewable electricity. This paper analyses the energy, economic and environmental implications of carbon and renewable electricity targets in Scotland and the UK using a newly developed two-region UK MARKAL energy system model, where Scotland (SCT) and rest of the UK (RUK) are the two regions. The paper shows that meeting Scotland's carbon targets does not require additional decarbonisation effort if the UK meets its own targets at least cost; and that Scotland's renewable energy ambitions do imply additional costs above the least cost path to the meeting the UK's obligations under the EU renewable energy directive. Meeting Scottish renewable electricity targets diverts investment and deployment in renewables from rest of the UK to Scotland. In addition to increased energy system cost, Scottish renewable electricity targets may also require early investment in new electricity transmission capacity between Scotland and rest of the UK.

Suggested Citation

  • Anandarajah, Gabrial & McDowall, Will, 2012. "What are the costs of Scotland's climate and renewable policies?," Energy Policy, Elsevier, vol. 50(C), pages 773-783.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:773-783
    DOI: 10.1016/j.enpol.2012.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512007094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence H. Goulder & Robert N. Stavins, 2011. "Interactions between State and Federal Climate Change Policies," NBER Chapters, in: The Design and Implementation of US Climate Policy, pages 109-121, National Bureau of Economic Research, Inc.
    2. Chris Bataille & Mark Jaccard & John Nyboer & Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, , vol. 27(2_suppl), pages 1-20, June.
    3. N/A, 2011. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 218(1), pages 3-3, October.
    4. Allan, Grant J. & Bryden, Ian & McGregor, Peter G. & Stallard, Tim & Kim Swales, J. & Turner, Karen & Wallace, Robin, 2008. "Concurrent and legacy economic and environmental impacts from establishing a marine energy sector in Scotland," Energy Policy, Elsevier, vol. 36(7), pages 2734-2753, July.
    5. Ichinohe, Masayuki & Endo, Eiichi, 2006. "Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model," Applied Energy, Elsevier, vol. 83(10), pages 1047-1061, October.
    6. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    7. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    8. N/A, 2011. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 216(1), pages 3-3, April.
    9. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    10. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    11. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    12. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    13. Lutsey, Nicholas & Sperling, Daniel, 2008. "America's bottom-up climate change mitigation policy," Energy Policy, Elsevier, vol. 36(2), pages 673-685, February.
    14. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    15. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    16. Lutsey, Nicholas P. & Sperling, Dan, 2008. "America's Bottom-Up Climate Change Mitigation Policy," Institute of Transportation Studies, Working Paper Series qt8jj755d4, Institute of Transportation Studies, UC Davis.
    17. Paul Ekins & Gabrial Anandarajah & Neil Strachan, 2011. "Towards a low-carbon economy: scenarios and policies for the UK," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 865-882, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    2. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    2. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    3. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    4. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    5. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    6. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    7. McDowall, Will & Anandarajah, Gabrial & Dodds, Paul E. & Tomei, Julia, 2012. "Implications of sustainability constraints on UK bioenergy development: Assessing optimistic and precautionary approaches with UK MARKAL," Energy Policy, Elsevier, vol. 47(C), pages 424-436.
    8. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    9. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    10. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    11. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    12. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    13. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    14. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    15. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    16. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    17. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    18. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    19. Lekavičius, Vidas & Galinis, Arvydas & Miškinis, Vaclovas, 2019. "Long-term economic impacts of energy development scenarios: The role of domestic electricity generation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:773-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.