IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp6-11.html
   My bibliography  Save this article

Coal fires, fresh air and the hardy British: A historical view of domestic energy efficiency and thermal comfort in Britain

Author

Listed:
  • Rudge, Janet

Abstract

Fuel poverty has been most commonly researched in the UK although it is experienced in other parts of Europe, to varying degrees. Boardman (1991) showed that energy inefficient buildings and heating systems are the most significant components of fuel poverty and highlighted the legacy of older buildings in this country that remain the majority of those now recognised as hard to treat. This paper considers the historical context for fuel poverty as a particularly British phenomenon. It examines claims that this is due to the mild climate and low indoor temperature expectations. It is concluded that there are significant differences from the European situation. The climate, particularly its characteristic changeability, has influenced building and heating methods, and the low priority given to energy efficiency by legislators. Significantly, economic priorities produced poor quality mass housing during the industrial revolution. The availability of coal encouraged the use of open fires, which demanded high ventilation rates. The British do value warmth but older buildings designed for heating with radiant open fires are difficult to adapt to convective central heating. Lessons can be drawn for newly industrialised economies similarly producing poor quality mass housing with low priorities for energy efficiency.

Suggested Citation

  • Rudge, Janet, 2012. "Coal fires, fresh air and the hardy British: A historical view of domestic energy efficiency and thermal comfort in Britain," Energy Policy, Elsevier, vol. 49(C), pages 6-11.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:6-11
    DOI: 10.1016/j.enpol.2011.11.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milne, Geoffrey & Boardman, Brenda, 2000. "Making cold homes warmer: the effect of energy efficiency improvements in low-income homes A report to the Energy Action Grants Agency Charitable Trust," Energy Policy, Elsevier, vol. 28(6-7), pages 411-424, June.
    2. Fisk, D.J., 1977. "Microeconomics and the demand for space heating," Energy, Elsevier, vol. 2(4), pages 391-405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouquet, Roger, 2012. "The demand for environmental quality in driving transitions to low-polluting energy sources," Energy Policy, Elsevier, vol. 50(C), pages 138-149.
    2. Scarpellini, Sabina & Sanz Hernández, M. Alexia & Llera-Sastresa, Eva & Aranda, Juan A. & López Rodríguez, María Esther, 2017. "The mediating role of social workers in the implementation of regional policies targeting energy poverty," Energy Policy, Elsevier, vol. 106(C), pages 367-375.
    3. Moser, Simon, 2013. "Poor energy poor: Energy saving obligations, distributional effects, and the malfunction of the priority group," Energy Policy, Elsevier, vol. 61(C), pages 1003-1010.
    4. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    5. Scarpellini, Sabina & Rivera-Torres, Pilar & Suárez-Perales, Inés & Aranda-Usón, Alfonso, 2015. "Analysis of energy poverty intensity from the perspective of the regional administration: Empirical evidence from households in southern Europe," Energy Policy, Elsevier, vol. 86(C), pages 729-738.
    6. Roberts, Erin, 2020. "Warming with wood: Exploring the everyday heating practices of rural off-gas households in Wales," Energy Policy, Elsevier, vol. 142(C).
    7. Alexandru Maxim & Costică Mihai & Constantin-Marius Apostoaie & Cristian Popescu & Costel Istrate & Ionel Bostan, 2016. "Implications and Measurement of Energy Poverty across the European Union," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    8. Lowans, Christopher & Furszyfer Del Rio, Dylan & Sovacool, Benjamin K. & Rooney, David & Foley, Aoife M., 2021. "What is the state of the art in energy and transport poverty metrics? A critical and comprehensive review," Energy Economics, Elsevier, vol. 101(C).
    9. Marchand, Robert D. & Koh, S.C. Lenny & Morris, Jonathan C., 2015. "Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places," Energy Policy, Elsevier, vol. 84(C), pages 96-106.
    10. Stefan Bouzarovski & Saska Petrova & Sergio Tirado-Herrero, 2014. "From Fuel Poverty to Energy Vulnerability: The Importance of Services, Needs and Practices," SPRU Working Paper Series 2014-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Moeller, Simon & Bauer, Amelie, 2022. "Energy (in)efficient comfort practices: How building retrofits influence energy behaviours in multi-apartment buildings," Energy Policy, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muritala Taiwo Adewale & Awolaja Ayodeji Muyideen & James Olurotimi, 2013. "Impact of Climate Change on Employment in Nigeria," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(3), pages 153-161, June.
    2. Langevin, Jared & Gurian, Patrick L. & Wen, Jin, 2013. "Reducing energy consumption in low income public housing: Interviewing residents about energy behaviors," Applied Energy, Elsevier, vol. 102(C), pages 1358-1370.
    3. Ürge-Vorsatz, Diana & Tirado Herrero, Sergio, 2012. "Building synergies between climate change mitigation and energy poverty alleviation," Energy Policy, Elsevier, vol. 49(C), pages 83-90.
    4. Healy, John D. & Clinch, J. Peter, 2004. "Quantifying the severity of fuel poverty, its relationship with poor housing and reasons for non-investment in energy-saving measures in Ireland," Energy Policy, Elsevier, vol. 32(2), pages 207-220, January.
    5. Coyne, Bryan & Lyons, Sean & McCoy, Daire, 2016. "The Effects of Home Energy Efficiency Upgrades on Social Housing Tenants: Evidence from Ireland," Papers WP544, Economic and Social Research Institute (ESRI).
    6. Galassi, Veronica & Madlener, Reinhard, 2016. "Shall I Open the Window? An Experiment on Effort and Habits in Thermal-Comfort Adjustment Practices," FCN Working Papers 19/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2018. "The Effect of House Energy Efficiency Costs on the Participation Rate and Investment Amount of Lower-Income Households," MPRA Paper 86590, University Library of Munich, Germany.
    8. Saska Petrova & Michael Gentile & Ilkka Henrik Mäkinen & Stefan Bouzarovski, 2013. "Perceptions of Thermal Comfort and Housing Quality: Exploring the Microgeographies of Energy Poverty in Stakhanov, Ukraine," Environment and Planning A, , vol. 45(5), pages 1240-1257, May.
    9. Keirstead, James, 2006. "Evaluating the applicability of integrated domestic energy consumption frameworks in the UK," Energy Policy, Elsevier, vol. 34(17), pages 3065-3077, November.
    10. Buylova, Alexandra, 2020. "Spotlight on energy efficiency in Oregon: Investigating dynamics between energy use and socio-demographic characteristics in spatial modeling of residential energy consumption," Energy Policy, Elsevier, vol. 140(C).
    11. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "The influence of price and non-price effects on demand for heating in the EU residential sector," Energy, Elsevier, vol. 81(C), pages 146-158.
    12. Webber, Phil & Gouldson, Andy & Kerr, Niall, 2015. "The impacts of household retrofit and domestic energy efficiency schemes: A large scale, ex post evaluation," Energy Policy, Elsevier, vol. 84(C), pages 35-43.
    13. Camprubí, Lluís & Malmusi, Davide & Mehdipanah, Roshanak & Palència, Laia & Molnar, Agnes & Muntaner, Carles & Borrell, Carme, 2016. "Façade insulation retrofitting policy implementation process and its effects on health equity determinants: A realist review," Energy Policy, Elsevier, vol. 91(C), pages 304-314.
    14. Du, Qiang & Han, Xiao & Li, Yi & Li, Zhe & Xia, Bo & Guo, Xiqian, 2021. "The energy rebound effect of residential buildings: Evidence from urban and rural areas in China," Energy Policy, Elsevier, vol. 153(C).
    15. Vadodaria, K. & Loveday, D.L. & Haines, V., 2014. "Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis," Energy Policy, Elsevier, vol. 64(C), pages 252-262.
    16. Genovese, Andrea & Lenny Koh, S.C. & Acquaye, Adolf, 2013. "Energy efficiency retrofitting services supply chains: Evidence about stakeholders and configurations from the Yorskhire and Humber region case," International Journal of Production Economics, Elsevier, vol. 144(1), pages 20-43.
    17. Madlener, Reinhard & Hauertmann, Maximilian, 2011. "Rebound Effects in German Residential Heating: Do Ownership and Income Matter?," FCN Working Papers 2/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Jenkins, D.P., 2010. "The value of retrofitting carbon-saving measures into fuel poor social housing," Energy Policy, Elsevier, vol. 38(2), pages 832-839, February.
    19. Galassi, Veronica & Madlener, Reinhard, 2016. "Some Like it Hot: The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," FCN Working Papers 11/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    20. Clinch, J. Peter & Healy, John D., 2003. "Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model," Energy Economics, Elsevier, vol. 25(5), pages 565-583, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:6-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.