IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp209-221.html
   My bibliography  Save this article

Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China

Author

Listed:
  • Dong, Jun
  • Zhang, Xu
  • Xu, Xiaolin

Abstract

In accordance with the energy planning in China, within the “Twelfth Five-Year” period (2011–2015), the proportion of natural gas among primary energy consumption is expected to increase from the current 4% to 8%. In 2015, about 17 natural gas pipelines will be completed. This paper reviews the current situation of gas power generation, analyzes the main opportunities and obstacles of gas power generation development in China, and conducts a techno-economic assessment of the natural gas power generation, taking into account the role and the interaction of the multiple stakeholders in the natural gas industry chain. Taking a power plant fueled with the natural gas transported by the second West-to-East Pipeline as an example, it is found that the on-grid power price fluctuates upward with the rise of gas price and downward with the increase of annual utilization hours, and the influences of tax policies on the on-grid power price prove to be highly significant. As the analysis and calculation indicate, the environmental benefits of natural gas power generation ought to be strongly emphasized, compared with coal-fired power generation. Finally, this paper puts forward specific policy recommendations, from the perspectives of electricity price, gas price, tax, power grid dispatching, etc.

Suggested Citation

  • Dong, Jun & Zhang, Xu & Xu, Xiaolin, 2012. "Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China," Energy Policy, Elsevier, vol. 48(C), pages 209-221.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:209-221
    DOI: 10.1016/j.enpol.2012.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kjarstad, Jan & Johnsson, F., 2007. "Prospects of the European gas market," Energy Policy, Elsevier, vol. 35(2), pages 869-888, February.
    2. Shukla, P.R. & Dhar, Subash & Victor, David G. & Jackson, Mike, 2009. "Assessment of demand for natural gas from the electricity sector in India," Energy Policy, Elsevier, vol. 37(9), pages 3520-3534, September.
    3. Lin, Wensheng & Zhang, Na & Gu, Anzhong, 2010. "LNG (liquefied natural gas): A necessary part in China's future energy infrastructure," Energy, Elsevier, vol. 35(11), pages 4383-4391.
    4. Shi, Guo-Hua & Jing, You-Yin & Wang, Song-Ling & Zhang, Xu-Tao, 2010. "Development status of liquefied natural gas industry in China," Energy Policy, Elsevier, vol. 38(11), pages 7457-7465, November.
    5. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
    6. Fernandes, Elton & Fonseca, Marcus Vinicius de A. & Alonso, Paulo Sergio R., 2005. "Natural gas in Brazil's energy matrix: demand for 1995-2010 and usage factors," Energy Policy, Elsevier, vol. 33(3), pages 365-386, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bell, William Paul & Zheng, Xuemei, 2018. "Inclusive growth and climate change adaptation and mitigation in Australia and China : Removing barriers to solving wicked problems," MPRA Paper 84509, University Library of Munich, Germany.
    2. Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.
    3. Flavio Menezes & Xuemei Zhang, 2016. "Regulatory Incentives for a Low-Carbon Electricity Sector in China," Discussion Papers Series 562, School of Economics, University of Queensland, Australia.
    4. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    5. Liu, Qilin & Zhang, Wenhua & Yao, Mingtao & Yuan, Jiahai, 2017. "Carbon emissions performance regulation for China’s top generation groups by 2020: Too challenging to realize?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 326-334.
    6. Yingjian, Li & Abakr, Yousif A. & Qi, Qiu & Xinkui, You & Jiping, Zhou, 2016. "Energy efficiency assessment of fixed asset investment projects – A case study of a Shenzhen combined-cycle power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1195-1208.
    7. Long, Xingle & Naminse, Eric Yaw & Du, Jianguo & Zhuang, Jincai, 2015. "Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 680-688.
    8. Raj, Ratan & Ghandehariun, Samane & Kumar, Amit & Linwei, Ma, 2016. "A well-to-wire life cycle assessment of Canadian shale gas for electricity generation in China," Energy, Elsevier, vol. 111(C), pages 642-652.
    9. Hu, Junfeng & Kwok, Gabe & Xuan, Wang & Williams, James H. & Kahrl, Fredrich, 2013. "Using natural gas generation to improve power system efficiency in China," Energy Policy, Elsevier, vol. 60(C), pages 116-121.
    10. Dzikri Firmansyah Hakam & Ayodele O. Asekomeh, 2018. "Gas Monetisation Intricacies: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 174-181.
    11. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    12. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    2. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    3. Yan, Zhaojin & Yang, Guanghao & He, Rong & Yang, Hui & Ci, Hui, 2023. "“Ship-port-country” multi-dimensional research on the fine analysis of China's LNG trade," Journal of Transport Geography, Elsevier, vol. 110(C).
    4. Dzikri Firmansyah Hakam & Ayodele O. Asekomeh, 2018. "Gas Monetisation Intricacies: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 174-181.
    5. Yin, Yuwei & Lam, Jasmine Siu Lee, 2022. "Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation," Energy, Elsevier, vol. 250(C).
    6. Yin, Yuwei & Lam, Jasmine Siu Lee, 2022. "Impacts of energy transition on Liquefied Natural Gas shipping: A case study of China and its strategies," Transport Policy, Elsevier, vol. 115(C), pages 262-274.
    7. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    8. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    9. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    10. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    11. Tong, Weixin & Ji, Jie & Wang, Chen & Li, Chunxiao & Zhu, Jiping, 2023. "Experimental study on the combustion behaviors of continuous methanol spill fires on the vertical plane," Energy, Elsevier, vol. 285(C).
    12. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    13. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    14. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    15. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    16. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    17. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    18. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    19. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    20. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:209-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.