IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p4816-4822.html
   My bibliography  Save this article

Potential emissions reductions from grandfathered coal power plants in the United States

Author

Listed:
  • Cohan, Daniel S.
  • Douglass, Catherine

Abstract

A two-tiered approach to environmental regulation in the United States has long allowed existing coal-fired power plants to emit air pollutants at far higher rates than new facilities. The potential for reducing the emissions of existing coal-fired facilities is quantified via two hypothetical scenarios: the installation of available retrofit control technologies, or the imposition of New Source Performance Standards (NSPS). Available control technologies could have reduced year 2005 emissions by 56% for NOx and 72% for SO2 for a cost of $11.3 billion/year (2004$), likely yielding far larger benefits to human health. Slightly more emission reductions would be achieved by upgrading or replacing existing facilities to achieve the NSPS emissions limits required of all new facilities. Potential CO2 reductions are more speculative due to the emerging nature of carbon capture and efficiency retrofit technologies. Recent policies such as the Cross-State Air Pollution Rule would likely achieve most of the NOx and SO2 reduction potential identified by the scenario analyses for grandfathered facilities. However, escalating obstacles to new generation capacity may perpetuate the reliance on an aging fleet of power plants, resulting in higher rates of coal consumption and CO2 emissions than could be achieved by new or retrofit units.

Suggested Citation

  • Cohan, Daniel S. & Douglass, Catherine, 2011. "Potential emissions reductions from grandfathered coal power plants in the United States," Energy Policy, Elsevier, vol. 39(9), pages 4816-4822, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4816-4822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004952
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Tollefson, 2007. "Air permit blocks Kansas coal plants," Nature, Nature, vol. 449(7165), pages 953-953, October.
    2. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    3. Mathews, John, 2007. "Seven steps to curb global warming," Energy Policy, Elsevier, vol. 35(8), pages 4247-4259, August.
    4. Ackerman, Frank & Biewald, Bruce & White, David & Woolf, Tim & Moomaw, William, 1999. "Grandfathering and coal plant emissions: the cost of cleaning up the Clean Air Act," Energy Policy, Elsevier, vol. 27(15), pages 929-940, December.
    5. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyi Chen & Wei Chen & Ahsanullah Soomro & Lijuan Luo & Wenguo Xiang, 2020. "Multi-objective economic emission dispatch of thermal power plants based on grey relational analysis and analytic hierarchy process," Energy & Environment, , vol. 31(5), pages 785-812, August.
    2. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    3. Adair, Sarah K. & Hoppock, David C. & Monast, Jonas J., 2014. "New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes," Energy Policy, Elsevier, vol. 70(C), pages 183-192.
    4. Bialek, Sylwia & Gregory, Jack & Revesz, Richard L., 2022. "Still your grandfather's boiler: Estimating the effects of the Clean Air Act's grandfathering provisions," Working Papers 05/2022, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    5. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "MINLP model for optimizing electricity production from coal-fired power plants considering carbon management," Energy Policy, Elsevier, vol. 51(C), pages 493-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    2. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    3. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    4. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    5. Nicholas Z Muller & Akshaya Jha, 2017. "Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    6. YingHua He & Thierry Magnac, 2022. "Application Costs and Congestion in Matching Markets," The Economic Journal, Royal Economic Society, vol. 132(648), pages 2918-2950.
    7. Sam Hampton & Richard Blundel & Aqueel Wahga & Tina Fawcett & Christopher Shaw, 2022. "Transforming small and medium‐sized enterprises to address the climate emergency: The case for values‐based engagement," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1424-1439, September.
    8. Bialek, Sylwia & Gregory, Jack & Revesz, Richard L., 2022. "Still your grandfather's boiler: Estimating the effects of the Clean Air Act's grandfathering provisions," Working Papers 05/2022, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    9. Roy, René & Baker, Laurie & Thomassin, Paul J., 2013. "Estimating the Cost of Agricultural Pollution Abatement: Establishing Beneficial Management Practices in the Bras d’Henri Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150956, Agricultural and Applied Economics Association.
    10. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    11. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    12. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    13. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.
    14. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    15. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    16. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    17. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    18. Nicholas Z. Muller, 2014. "Toward the Measurement of Net Economic Welfare: Air Pollution Damage in the US National Accounts–2002, 2005, 2008," NBER Chapters, in: Measuring Economic Sustainability and Progress, pages 429-459, National Bureau of Economic Research, Inc.
    19. Britt Groosman & Nicholas Muller & Erin O’Neill-Toy, 2011. "The Ancillary Benefits from Climate Policy in the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 585-603, December.
    20. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4816-4822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.