IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2993-3004.html
   My bibliography  Save this article

Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response

Author

Listed:
  • Gyamfi, Samuel
  • Krumdieck, Susan

Abstract

Peak demand on electricity grids is a growing problem that increases costs and risks to supply security. Residential sector loads often contribute significantly to seasonal and daily peak demand. Demand response projects aim to manage peak demand by applying price signals and automated load shedding technologies. This research investigates voluntary load shedding in response to information about the security of supply, the emission profile and the cost of meeting critical peak demand in the customers' network. Customer willingness to change behaviour in response to this information was explored through mail-back survey. The diversified demand modelling method was used along with energy audit data to estimate the potential peak load reduction resulting from the voluntary demand response. A case study was conducted in a suburb of Christchurch, New Zealand, where electricity is the main source for water and space heating. On this network, all water heating cylinders have ripple-control technology and about 50% of the households subscribe to differential day/night pricing plan. The survey results show that the sensitivity to supply security is on par with price, with the emission sensitivity being slightly weaker. The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response.

Suggested Citation

  • Gyamfi, Samuel & Krumdieck, Susan, 2011. "Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response," Energy Policy, Elsevier, vol. 39(5), pages 2993-3004, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2993-3004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00192-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dillman, Don A. & Rosa, Eugene A. & Dillman, Joye J., 1983. "Lifestyle and home energy conservation in the United States: the poor accept lifestyle cutbacks while the wealthy invest in conservation," Journal of Economic Psychology, Elsevier, vol. 3(3-4), pages 299-315, September.
    2. Wall, Rob & Crosbie, Tracey, 2009. "Potential for reducing electricity demand for lighting in households: An exploratory socio-technical study," Energy Policy, Elsevier, vol. 37(3), pages 1021-1031, March.
    3. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    4. Charles Goldman & Galen Barbose & Joseph Eto, 2002. "California Customer Load Reductions during the Electricity Crisis: Did They Help to Keep the Lights On?," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 113-142, June.
    5. Narayan, Paresh Kumar & Smyth, Russell & Prasad, Arti, 2007. "Electricity consumption in G7 countries: A panel cointegration analysis of residential demand elasticities," Energy Policy, Elsevier, vol. 35(9), pages 4485-4494, September.
    6. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    2. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Applied Energy, Elsevier, vol. 150(C), pages 211-223.
    3. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    4. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    5. Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.
    6. SHIMON ELBAZ & Adriana ZAIT, 2018. "Effect Of Monetary Incentives On The Demand For Electricity Of Domestic Consumers €“ Case Of Israel," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 21, pages 131-162, June.
    7. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    8. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    9. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    10. Bindu Shrestha & Sudarshan R. Tiwari & Sushil B. Bajracharya & Martina M. Keitsch & Hom B. Rijal, 2021. "Review on the Importance of Gender Perspective in Household Energy-Saving Behavior and Energy Transition for Sustainability," Energies, MDPI, vol. 14(22), pages 1-18, November.
    11. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    12. Wang, Bo & Wang, Xiaomeng & Guo, Dongxue & Zhang, Bin & Wang, Zhaohua, 2018. "Analysis of factors influencing residents’ habitual energy-saving behaviour based on NAM and TPB models: Egoism or altruism?," Energy Policy, Elsevier, vol. 116(C), pages 68-77.
    13. Klingler, Anna-Lena & Luthander, Rasmus, 2018. "Market diffusion of residential PV and battery systems driven by self-consumption: A comparison of Sweden and Germany," Working Papers "Sustainability and Innovation" S18/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Boudet, Hilary S. & Flora, June A. & Armel, K. Carrie, 2016. "Clustering household energy-saving behaviours by behavioural attribute," Energy Policy, Elsevier, vol. 92(C), pages 444-454.
    15. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    17. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    18. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    19. Massimo Filippini & Bettina Hirl & Giuliano Masiero, 2015. "Rational habits in residential electricity demand," IdEP Economic Papers 1506, USI Università della Svizzera italiana.
    20. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2993-3004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.