IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v4y1988i03p365-383_01.html
   My bibliography  Save this article

The History of Continuous-Time Econometric Models

Author

Listed:
  • Bergstrom, A. R.

Abstract

Although it is only during the last decade that continuous-time models have been extensively used in applied econometric work, the development of statistical methods applicable to such models commenced over 40 years ago. The first significant contribution to the problem of estimating the parameters of continuous-time stochastic models from discrete data was made by the British statistician Bartlett [1946] only three years after the pioneering contribution of Haavelmo [1943] on simultaneous equations models. Moreover, by this time the fundamental mathematical theory of continuous-time stochastic models was already well developed, major contributions having been made by some of the leading mathematicians of the twentieth century, including Einstein, Weiner, and Kolmogorov.

Suggested Citation

  • Bergstrom, A. R., 1988. "The History of Continuous-Time Econometric Models," Econometric Theory, Cambridge University Press, vol. 4(3), pages 365-383, December.
  • Handle: RePEc:cup:etheor:v:4:y:1988:i:03:p:365-383_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600013359/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Fuleky, 2012. "On the choice of the unit period in time series models," Applied Economics Letters, Taylor & Francis Journals, vol. 19(12), pages 1179-1182, August.
    2. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Modelling short and long-term risks in power markets: Empirical evidence from Nord Pool," Energy Policy, Elsevier, vol. 38(10), pages 5671-5683, October.
    3. J. Oud, 2010. "Second-order stochastic differential equation model as an alternative for the ALT and CALT models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(2), pages 203-215, June.
    4. Tianshun Yan & Yanyong Zhao & Wentao Wang, 2020. "Likelihood-based estimation of a semiparametric time-dependent jump diffusion model of the short-term interest rate," Computational Statistics, Springer, vol. 35(2), pages 539-557, June.
    5. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A selective overview of nonparametric methods in financial econometricsâ€Â," Finance Working Papers 22469, East Asian Bureau of Economic Research.
    6. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    7. Tucker S. McElroy & Thomas M. Trimbur, 2007. "Continuous time extraction of a nonstationary signal with illustrations in continuous low-pass and band-pass filtering," Finance and Economics Discussion Series 2007-68, Board of Governors of the Federal Reserve System (U.S.).
    8. Marc J. M. H. Delsing & Johan H. L. Oud, 2008. "Analyzing reciprocal relationships by means of the continuous‐time autoregressive latent trajectory model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 58-82, February.
    9. Peter Robinson, 2007. "On Discrete Sampling Of Time-Varyingcontinuous-Time Systems," STICERD - Econometrics Paper Series 520, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    11. Sy‐Miin Chow & Guangjian Zhang, 2008. "Continuous‐time modelling of irregularly spaced panel data using a cubic spline model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 131-154, February.
    12. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    13. Tucker McElroy, 2013. "Forecasting continuous-time processes with applications to signal extraction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 439-456, June.
    14. Robinson, Peter, 2007. "On discrete sampling of time-varying continuous-time systems," LSE Research Online Documents on Economics 6795, London School of Economics and Political Science, LSE Library.
    15. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A Selective Overview of Nonparametric Methods in Financial Econometrics” by Jianqing Fan," Working Papers 08-2005, Singapore Management University, School of Economics.
    16. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    17. Arie ten Cate, 2004. "Refinement of the partial adjustment model using continuous-time econometrics," CPB Discussion Paper 41, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:4:y:1988:i:03:p:365-383_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.