IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i2p554-559.html
   My bibliography  Save this article

Bio-diesel: Initiatives, potential and prospects in Thailand: A review

Author

Listed:
  • Siriwardhana, Manjula
  • Opathella, G.K.C.
  • Jha, M.K.

Abstract

Thailand experiences a great economic and industrial development and is the second largest energy consumer in South East Asia. Being a net oil importer, Thai government has declared a renewable energy development programme in order to secure sustainable development and energy security. Thailand spends more than 10% of GDP for energy imports and transport sector accounts for 36% of total final energy consumption of which 50% is diesel. Diesel marks a huge impact on Thai economy. Thai government's bio-diesel development strategy is to replace 10% of petro-diesel in transport sector by bio-diesel by 2012. The plan is to increase the use of bio-diesel from 365 million liters in 2007 to 3100 million liters by 2012. This paper reviews the current status and potential of bio-diesel in Thailand and investigates and discusses the qualities and weaknesses of the proposed road-map. The proposed road-map definitely gives immediate solution for soaring oil prices, but the long-term economic, environmental and social impacts need to be examined.

Suggested Citation

  • Siriwardhana, Manjula & Opathella, G.K.C. & Jha, M.K., 2009. "Bio-diesel: Initiatives, potential and prospects in Thailand: A review," Energy Policy, Elsevier, vol. 37(2), pages 554-559, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:554-559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00555-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    2. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    3. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    4. Babel, M.S. & Shrestha, B. & Perret, S.R., 2011. "Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand," Agricultural Water Management, Elsevier, vol. 101(1), pages 8-26.
    5. Jayed, M.H. & Masjuki, H.H. & Saidur, R. & Kalam, M.A. & Jahirul, M.I., 2009. "Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2452-2462, December.
    6. Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
    7. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    8. Veronica Winoto & Nuttawan Yoswathana, 2019. "Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil," Energies, MDPI, vol. 12(2), pages 1-13, January.
    9. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    10. Kunda-Wamuwi, Chibuye F. & Babalola, Folaranmi D. & Chirwa, Paxie W., 2017. "Investigating factors responsible for farmers' abandonment of Jatropha curcas L. as bioenergy crop under smallholder out-grower schemes in Chibombo District, Zambia," Energy Policy, Elsevier, vol. 110(C), pages 62-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    2. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    3. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    4. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    5. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    6. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    7. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    9. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    10. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    11. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    12. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    14. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    15. Liang, Hanwei & Ren, Jingzheng & Lin, Ruojue & Liu, Yue, 2019. "Alternative-fuel based vehicles for sustainable transportation: A fuzzy group decision supporting framework for sustainability prioritization," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 33-43.
    16. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    18. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    20. Grigore Cican & Daniel Eugeniu Crunteanu & Radu Mirea & Laurentiu Constantin Ceatra & Constantin Leventiu, 2023. "Biodiesel from Recycled Sunflower and Palm Oil—A Sustainable Fuel for Microturbo-Engines Used in Airside Applications," Sustainability, MDPI, vol. 15(3), pages 1-16, January.

    More about this item

    Keywords

    Bio-diesel Thailand Energy policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:554-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.