IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i11p4048-4056.html
   My bibliography  Save this article

Potentials and prospects for renewable energies at global scale

Author

Listed:
  • Resch, Gustav
  • Held, Anne
  • Faber, Thomas
  • Panzer, Christian
  • Toro, Felipe
  • Haas, Reinhard

Abstract

Renewable energies (RE) represent a cornerstone to steer our energy system in the direction of sustainability and supply security. Generating electricity, heat or biofuels from renewable energy sources has become a high priority in the energy policy strategies at national level as well as at a global scale. Challenging goals for these "new" supply options to meet our energy demands have been set, e.g. at European level by the commitment of meeting 20% of the overall energy demand from renewable energy sources by 2020. A broad set of different RE technologies and resources exist today. Obviously, for a comprehensive investigation of the future RE development it is of crucial importance to provide a detailed investigation of the country-or region-specific situation--e.g. with respect to the potential of the certain RE's in general as well as the part that can be realised in the near future. It is the core objective of this paper to fulfil above-mentioned constraints, aiming to present an overview on the RE potentials and prospects globally--but based on region- and/or country-specific assessments of the resource conditions, the overall energy system boundaries and the related energy policy framework. Thus, a topical focus is put on both the near to mid future up to 2020 and the long-term perspective, indicating besides theoretical and technical potentials also the realisable mid- and long-term potentials referring to the time-horizon between 2030 and 2050 and prospects for the various renewable energy options. Future prospects are discussed by means of analysing energy policy scenarios as conducted for the International Energy Agency (IEA)'s "World Energy Outlook"-series. In this context, emphasis is given on the illustration of the possible contribution of renewable energies to power supply.

Suggested Citation

  • Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:11:p:4048-4056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00304-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehner, Bernhard & Czisch, Gregor & Vassolo, Sara, 2005. "The impact of global change on the hydropower potential of Europe: a model-based analysis," Energy Policy, Elsevier, vol. 33(7), pages 839-855, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    2. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    3. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    4. Franziska Koch & Monika Prasch & Heike Bach & Wolfram Mauser & Florian Appel & Markus Weber, 2011. "How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin," Energies, MDPI, vol. 4(10), pages 1-34, September.
    5. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    6. Pašičko, Robert & Branković, Čedo & Šimić, Zdenko, 2012. "Assessment of climate change impacts on energy generation from renewable sources in Croatia," Renewable Energy, Elsevier, vol. 46(C), pages 224-231.
    7. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    8. Shahrouz Abolhosseini & Almas Heshmati & Jorn Altmann, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," TEMEP Discussion Papers 2014109, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
    9. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    10. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    11. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    12. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    13. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    14. Alsaleh, Mohd & Abdul-Rahim, A.S., 2022. "The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?," Renewable Energy, Elsevier, vol. 185(C), pages 291-301.
    15. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    16. Ah-Voun, David & Chyong, Chi Kong & Li, Carmen, 2024. "Europe's energy security: From Russian dependence to renewable reliance," Energy Policy, Elsevier, vol. 184(C).
    17. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    18. Qian Zhou & Naota Hanasaki & Shinichiro Fujimori & Yoshimitsu Masaki & Yasuaki Hijioka, 2018. "Economic consequences of global climate change and mitigation on future hydropower generation," Climatic Change, Springer, vol. 147(1), pages 77-90, March.
    19. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    20. Hansen, Carly & Musa, Mirko & Sasthav, Colin & DeNeale, Scott, 2021. "Hydropower development potential at non-powered dams: Data needs and research gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:11:p:4048-4056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.