IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v34y2006i17p3078-3086.html
   My bibliography  Save this article

Fuel price determination in transportation sector using predicted energy and transport demand

Author

Listed:
  • Haldenbilen, Soner

Abstract

No abstract is available for this item.

Suggested Citation

  • Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
  • Handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3078-3086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(05)00163-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ceylan, Halim & Bell, Michael G. H., 2005. "Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 169-185, February.
    2. Ceylan, Halim & Bell, Michael G. H., 2004. "Traffic signal timing optimisation based on genetic algorithm approach, including drivers' routing," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 329-342, May.
    3. Haldenbilen, Soner & Ceylan, Halim, 2005. "Genetic algorithm approach to estimate transport energy demand in Turkey," Energy Policy, Elsevier, vol. 33(1), pages 89-98, January.
    4. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Jian & Yang, Ying & Wang, Shouyang & Lai, Kin Keung, 2016. "Fuel efficiency and emission in China's road transport sector: Induced effect and rebound effect," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 188-197.
    2. Solaymani, Saeed & Kari, Fatimah, 2013. "Environmental and economic effects of high petroleum prices on transport sector," Energy, Elsevier, vol. 60(C), pages 435-441.
    3. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    4. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    5. Lu, I.J. & Lewis, Charles & Lin, Sue J., 2009. "The forecast of motor vehicle, energy demand and CO2 emission from Taiwan's road transportation sector," Energy Policy, Elsevier, vol. 37(8), pages 2952-2961, August.
    6. Al-Ghandoor, Ahmed & Jaber, Jamal & Al-Hinti, Ismael & Abdallat, Yousef, 2013. "Statistical assessment and analyses of the determinants of transportation sector gasoline demand in Jordan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 129-138.
    7. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    8. Emmanuel Kwabena Anin & Jonathan Annan & Alexander Fianko Otchere, 2013. "Evaluating the Role of Mass Transit and its Effect on Fuel Efficiency in the Kumasi Metropolis, Ghana," International Journal of Business and Social Research, LAR Center Press, vol. 3(3), pages 107-116, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haldenbilen, Soner & Ceylan, Halim, 2005. "The development of a policy for road tax in Turkey, using a genetic algorithm approach for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(10), pages 861-877, December.
    2. Ozan, Cenk & Haldenbilen, Soner & Ceylan, Halim, 2011. "Estimating emissions on vehicular traffic based on projected energy and transport demand on rural roads: Policies for reducing air pollutant emissions and energy consumption," Energy Policy, Elsevier, vol. 39(5), pages 2542-2549, May.
    3. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    4. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    5. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    6. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    7. Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
    8. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    9. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    12. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    13. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    14. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    15. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    17. A. Assaf, 2011. "Accounting for technological differences in modelling the performance of airports: a Bayesian approach," Applied Economics, Taylor & Francis Journals, vol. 43(18), pages 2267-2275.
    18. Hong Ki An & Muhammad Awais Javeed & Gimok Bae & Nimra Zubair & Ahmed Sayed M. Metwally & Patrizia Bocchetta & Fan Na & Muhammad Sufyan Javed, 2022. "Optimized Intersection Signal Timing: An Intelligent Approach-Based Study for Sustainable Models," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    19. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    20. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:34:y:2006:i:17:p:3078-3086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.