IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v175y2023ics0301421523000599.html
   My bibliography  Save this article

Exploring the value of electric vehicles to domestic end-users

Author

Listed:
  • Ejeh, Jude O.
  • Roberts, Diarmid
  • Brown, Solomon F.

Abstract

Owing to the recent ban on the sales of new petrol and diesel cars in the United Kingdom (UK) by 2030, combined with the UK’s commitment to net-zero emission of greenhouse gases by 2050, a projected increase in the growth rate of electric vehicles (EVs) is inevitable. In recent years, there has been an increase in the adoption of EVs, but not at a rate sufficient to meet net-zero targets. Although benefits do exist for current EV owners, barriers such as the availability of charging infrastructure, total cost of ownership, battery costs, amongst others still present a challenge for the required adoption rate. In this work, we therefore aim to address some of these barriers, specifically the total cost of ownership and battery costs, by exploring the value a range of EVs on the market give to domestic end-users with different usage classes. Using a techno-economic-environmental mixed integer linear optimisation model which considers local energy demands, retail electricity tariffs, local renewable energy generation and battery degradation, potential benefits for EVs adopters are analysed from a cost or Carbon dioxide (CO2) minimisation objective. This model adopted considered a range of vehicle types – EVs and non-EVs – and properties, installed PV sizes, and user travel behaviour classes, and results showed that although EVs have a relatively higher purchase costs, total cost values are comparable, in some cases cheaper, when compared with conventional non-EVs. EV users further gain from environmental benefits through a reduction in the CO2 emitted irrespective of the user’s desired goal. A dominance analysis was also carried out to determine the order of importance of key input variables to the optimisation model in predicting costs and CO2 emission quantities. The results obtained are helpful to end-users in prioritising EV features during purchase based on personal goals of cost or carbon emissions reduction.

Suggested Citation

  • Ejeh, Jude O. & Roberts, Diarmid & Brown, Solomon F., 2023. "Exploring the value of electric vehicles to domestic end-users," Energy Policy, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:enepol:v:175:y:2023:i:c:s0301421523000599
    DOI: 10.1016/j.enpol.2023.113474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523000599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghimar Merhy & Ahmed Nait-Sidi-Moh & Nazih Moubayed, 2021. "A multi-objective optimization of electric vehicles energy flows: the charging process," Annals of Operations Research, Springer, vol. 296(1), pages 315-333, January.
    2. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
    3. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    4. Küfeoğlu, Sinan & Khah Kok Hong, Dennis, 2020. "Emissions performance of electric vehicles: A case study from the United Kingdom," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).
    6. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    2. Christian Manuel Moreno Rocha & Jorge D. Pertuz Ortiz & Neyder A. Rodriguez Ibanez, 2023. "A Diffuse Analysis Based on Analytical Processes to Prioritize Barriers in the Development of Renewable Energy Technologies in Alignment with the United Nations Sustainable Development Goals: Evidence," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 481-195, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    2. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    3. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    5. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    6. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    7. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    8. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    9. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    10. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
    11. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    12. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    13. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    14. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    15. Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
    16. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.
    17. Mohammadpour Shotorbani, Amin & Zeinal-Kheiri, Sevda & Chhipi-Shrestha, Gyan & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid," Applied Energy, Elsevier, vol. 304(C).
    18. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    19. Nelson, James & Johnson, Nathan G. & Fahy, Kelsey & Hansen, Timothy A., 2020. "Statistical development of microgrid resilience during islanding operations," Applied Energy, Elsevier, vol. 279(C).
    20. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:175:y:2023:i:c:s0301421523000599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.