IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics0301421521006248.html
   My bibliography  Save this article

The evolution, consolidation and future challenges of wind energy in Uruguay

Author

Listed:
  • Corrêa, Kleber Costa
  • Uriona-Maldonado, Mauricio
  • Vaz, Caroline Rodrigues

Abstract

Within a 20-year timeframe, Uruguay transitioned from being a hydro and thermal energy-dependent country to one of the world's leaders in wind energy, including a vast surplus capacity enabling energy exports to its neighbors. Even though the country presents one of the best examples of a successful implementation of clear and sound energy policy, it is still little known overseas. Therefore, the objective of this paper is to describe the evolution and consolidation of wind energy in the country, but also to point out the key future challenges the country will face. For such, we rely on data collected from interviews with experts and relevant policy actors in Uruguay, which had direct exposure to the wind energy policy. We made use of qualitative coding, topic modeling, and sentiment analysis as methodological approaches. Our results point to four key aspects that led to the success of the implementation of wind energy: public policies, market and actors, development and mechanisms, and niche-to-regime growth. Uruguay's main future challenges relate to how to keep up with new investments, mostly in other renewable technologies, while simultaneously keeping up with the know-how developed in the wind sector. The paper ends with some key lessons for public policy makers.

Suggested Citation

  • Corrêa, Kleber Costa & Uriona-Maldonado, Mauricio & Vaz, Caroline Rodrigues, 2022. "The evolution, consolidation and future challenges of wind energy in Uruguay," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521006248
    DOI: 10.1016/j.enpol.2021.112758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521006248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    2. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    3. Karl Hillman & Måns Nilsson & Annika Rickne & Thomas Magnusson, 2011. "Fostering sustainable technologies: a framework for analysing the governance of innovation systems," Science and Public Policy, Oxford University Press, vol. 38(5), pages 403-415, June.
    4. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    5. Keeley, Alexander Ryota & Matsumoto, Ken’ichi, 2018. "Relative significance of determinants of foreign direct investment in wind and solar energy in developing countries – AHP analysis," Energy Policy, Elsevier, vol. 123(C), pages 337-348.
    6. Edsand, Hans-Erik, 2017. "Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context," Technology in Society, Elsevier, vol. 49(C), pages 1-15.
    7. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona O., 2017. "Unpacking policy processes for addressing systemic problems in technological innovation systems: The case of offshore wind in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1217-1226.
    8. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    9. Linda M. Kamp, 2008. "Socio-technical analysis of the introduction of wind power in the Netherlands and Denmark," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(2/3), pages 276-293.
    10. repec:oup:scippl:v:45:y:2018:i:3:p:351-360. is not listed on IDEAS
    11. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    12. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    13. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    14. Altomonte, Hugo, 2017. "Las energías renovables no convencionales en la matriz de generación eléctrica: tres estudios de caso," Documentos de Proyectos 40975, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sæle, Hanne & Sperstad, Iver Bakken & Wang Hoiem, Kristian & Mathiesen, Vivi, 2023. "Understanding barriers to utilising flexibility in operation and planning of the electricity distribution system – Classification frameworks with applications to Norway," Energy Policy, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    2. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    3. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    4. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    5. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    6. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    7. Jordi Molas-Gallart & Alejandra Boni & Sandro Giachi & Johan Schot, 2021. "A formative approach to the evaluation of Transformative Innovation Policies [The Need for Reflexive Evaluation Approaches in Development Cooperation]," Research Evaluation, Oxford University Press, vol. 30(4), pages 431-442.
    8. Catia Milena Lopes & Annibal José Scavarda & Mauricio Nunes Macedo de Carvalho & André Luis Korzenowski, 2018. "The Business Model and Innovation Analyses: The Sustainable Transition Obstacles and Drivers for the Hospital Supply Chains," Resources, MDPI, vol. 8(1), pages 1-17, December.
    9. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    11. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    12. Kivimaa, Paula & Boon, Wouter & Hyysalo, Sampsa & Klerkx, Laurens, 2019. "Towards a typology of intermediaries in sustainability transitions: A systematic review and a research agenda," Research Policy, Elsevier, vol. 48(4), pages 1062-1075.
    13. John Holmberg & Johan Larsson, 2018. "A Sustainability Lighthouse—Supporting Transition Leadership and Conversations on Desirable Futures," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    14. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    15. Yu, Zhen & Gibbs, David, 2018. "Encircling cities from rural areas? Barriers to the diffusion of solar water heaters in China's urban market," Energy Policy, Elsevier, vol. 115(C), pages 366-373.
    16. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    17. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    18. Catia Milena Lopes & Annibal José Scavarda & Guilherme Luís Roehe Vaccaro & Christopher Rosa Pohlmann & André Luis Korzenowski, 2018. "Perspective of Business Models and Innovation for Sustainability Transition in Hospitals," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    19. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    20. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521006248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.