IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v145y2020ics0301421520304754.html
   My bibliography  Save this article

Assessing governance of low energy green building innovation in the building sector: Insights from Singapore and Delhi

Author

Listed:
  • Jain, Mansi
  • Siva, Vidushini
  • Hoppe, Thomas
  • Bressers, Hans

Abstract

This paper explores the governance of sectoral innovation and niche formation of green buildings and other low energy buildings (like NZEBs). Two analytical frameworks are used and synthesized: the Sectoral Systems Innovation Assessment framework (SSIAf) and the Governance Assessment Tool (GAT). The key components of the former are: shaping of expectations, actor network formation, institutions, learning process, and stimulating market demand. The SSIAf components are then assessed against the four quality criterions of the GAT framework, i.e. extent, coherence, flexibility, and intensity. The research design presented in this paper applies the analytical framework developed to case studies of two cities: Singapore and Delhi. Data collection involved participant observation and expert interviews. The results of the study reveal that the overall governance conditions in Singapore are fairly strong and highly supported by the government, unlike Delhi where governance quality was found to lack coherence and intensity, and can be considered only moderately supportive to green building innovations. The results also reveal the role of government actors in steering the energy transformation process in building sector. The analytical framework developed in this paper can be further elaborated, also as a potential policy tool to support cities in managing energy system innovations like energy infrastructures, smart grids or community energy storage in diverse and complex urban settings.

Suggested Citation

  • Jain, Mansi & Siva, Vidushini & Hoppe, Thomas & Bressers, Hans, 2020. "Assessing governance of low energy green building innovation in the building sector: Insights from Singapore and Delhi," Energy Policy, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:enepol:v:145:y:2020:i:c:s0301421520304754
    DOI: 10.1016/j.enpol.2020.111752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520304754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Corfee-Morlot & Lamia Kamal-Chaoui & Michael G. Donovan & Ian Cochran & Alexis Robert & Pierre-Jonathan Teasdale, 2009. "Cities, Climate Change and Multilevel Governance," OECD Environment Working Papers 14, OECD Publishing.
    2. Mansi Jain & Thomas Hoppe & Hans Bressers, 2017. "A Governance Perspective on Net Zero Energy Building Niche Development in India: The Case of New Delhi," Energies, MDPI, vol. 10(8), pages 1-22, August.
    3. Jozef Švajlenka & Mária Kozlovská, 2018. "Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    4. Beerepoot, Milou & Beerepoot, Niels, 2007. "Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector," Energy Policy, Elsevier, vol. 35(10), pages 4812-4825, October.
    5. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    6. Vidushini Siva & Thomas Hoppe & Mansi Jain, 2017. "Green Buildings in Singapore; Analyzing a Frontrunner’s Sectoral Innovation System," Sustainability, MDPI, vol. 9(6), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danlei Zhang & Yong He, 2022. "The Roles and Synergies of Actors in the Green Building Transition: Lessons from Singapore," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    2. Bovera, Filippo & Lo Schiavo, Luca, 2022. "From energy communities to sector coupling:a taxonomy for regulatory experimentation in the age of the European Green Deal," Energy Policy, Elsevier, vol. 171(C).
    3. Hongda Liu & Pinbo Yao & Xiaoxia Wang & Jialiang Huang & Liying Yu, 2021. "Research on the Peer Behavior of Local Government Green Governance Based on SECI Expansion Model," Land, MDPI, vol. 10(5), pages 1-26, May.
    4. Wadim Strielkowski & Olga Kovaleva & Tatiana Efimtseva, 2022. "Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    5. Luis Felipe Cândido & Jose Carlos Lazaro & Adriano Olivier de Freitas e Silva & José de Paula Barros Neto, 2023. "Sustainability Transitions in the Construction Sector: A Bibliometric Review," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    6. Tseng, Ming-Lang & Ardaniah, Viqi & Sujanto, Raditia Yudistira & Fujii, Minoru & Lim, Ming K., 2021. "Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    7. Chandan Swaroop Meena & Ashwani Kumar & Siddharth Jain & Ateeq Ur Rehman & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Muhammad Shafiq & Elsayed Tag Eldin, 2022. "Innovation in Green Building Sector for Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Felipe Cândido & Jose Carlos Lazaro & Adriano Olivier de Freitas e Silva & José de Paula Barros Neto, 2023. "Sustainability Transitions in the Construction Sector: A Bibliometric Review," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    2. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    3. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    4. Antonio Ledda & Elisabetta Anna Di Cesare & Giovanni Satta & Gianluca Cocco & Giovanna Calia & Filippo Arras & Annalisa Congiu & Emanuela Manca & Andrea De Montis, 2020. "Adaptation to Climate Change and Regional Planning: A Scrutiny of Sectoral Instruments," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    5. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    6. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    7. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    8. Aviel Verbruggen, 2011. "A Turbo Drive for the Global Reduction of Energy-Related CO 2 Emissions," Sustainability, MDPI, vol. 3(4), pages 1-17, April.
    9. Madad, A. & Gharagozlou, A. & Majedi, H. & Monavari, S.M., 2019. "A quantitative representation of the urban green building model, focusing on local climatic factors by utilizing monetary valuation," Ecological Economics, Elsevier, vol. 161(C), pages 61-72.
    10. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    11. Winfried Osthorst, 2020. "Tensions in Urban Transitions. Conceptualizing Conflicts in Local Climate Policy Arrangements," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Antonio Ledda & Marta Kubacka & Giovanna Calia & Sylwia Bródka & Vittorio Serra & Andrea De Montis, 2023. "Italy vs. Poland: A Comparative Analysis of Regional Planning System Attitudes toward Adaptation to Climate Changes and Green Infrastructures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    13. Janthana Kunchornrat & Aumnad Phdungsilp, 2012. "Multi-Level Governance of Low-Carbon Energy Systems in Thailand," Energies, MDPI, vol. 5(3), pages 1-14, February.
    14. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Fouad Khan & Benjamin K. Sovacool, 2016. "Testing the efficacy of voluntary urban greenhouse gas emissions inventories," Climatic Change, Springer, vol. 139(2), pages 141-154, November.
    16. Wim Lambrechts & Andrew Mitchell & Mark Lemon & Muhammad Usman Mazhar & Ward Ooms & Rikkert van Heerde, 2021. "The Transition of Dutch Social Housing Corporations to Sustainable Business Models for New Buildings and Retrofits," Energies, MDPI, vol. 14(3), pages 1-24, January.
    17. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    18. Waes, Arnoud van & Nikolaeva, Anna & Raven, Rob, 2021. "Challenges and dilemmas in strategic urban experimentationAn analysis of four cycling innovation living labs," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    19. Shaleen Singhal & Sapan Thapar & Meenakshi Kumar & Sourabh Jain, 2022. "Impacts of sustainable consumption and production initiatives in energy and waste management sectors: examples from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14184-14209, December.
    20. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:145:y:2020:i:c:s0301421520304754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.