IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519306937.html
   My bibliography  Save this article

Unmanaged climate risks to spent fuel from U.S. nuclear power plants: The case of sea-level rise

Author

Listed:
  • Jenkins, Lisa Martine
  • Alvarez, Robert
  • Jordaan, Sarah Marie

Abstract

Climate change and its accompanying sea-level rise is set to create risks to the United States’ stockpile of spent nuclear fuel, which results largely from nuclear power. Coastal spent fuel management facilities are vulnerable to unanticipated environmental events, as evidenced by the 2011 tsunami-related flooding at the Fukushima plant in Japan. We examine how policy-makers can manage climate risks posed to the coastal storage of radioactive materials, and identify the coastal spent fuel storage sites that will be most vulnerable to sea-level rise. A geospatial analysis of coastal sites shows that with six feet of sea-level rise, seven spent fuel sites will be juxtaposed by seawater. Of those, three will be near or completely surrounded by water, and should be considered a priority for mitigation: Humboldt Bay (California), Turkey Point (Florida), and Crystal River (Florida). To ensure policy-makers manage such climate risks, a risk management approach is proposed. Further, we recommend that policy-makers 1) transfer overdue spent fuel from cooling pools to dry casks, particularly where located in high risk sites; 2) develop a long-term and comprehensive storage plan that is less vulnerable to climate change; and 3) encourage international nuclear treaties and standards to take climate change into account.

Suggested Citation

  • Jenkins, Lisa Martine & Alvarez, Robert & Jordaan, Sarah Marie, 2020. "Unmanaged climate risks to spent fuel from U.S. nuclear power plants: The case of sea-level rise," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306937
    DOI: 10.1016/j.enpol.2019.111106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kopytko, Natalie & Perkins, John, 2011. "Climate change, nuclear power, and the adaptation-mitigation dilemma," Energy Policy, Elsevier, vol. 39(1), pages 318-333, January.
    2. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Minsoo & You, Jung S., 2022. "Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Minsoo & You, Jung S., 2022. "Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    3. Hughes, Larry & Ranjan, Ashish, 2013. "Event-related stresses in energy systems and their effects on energy security," Energy, Elsevier, vol. 59(C), pages 413-421.
    4. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Shadman, F. & Sadeghipour, S. & Moghavvemi, M. & Saidur, R., 2016. "Drought and energy security in key ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 50-58.
    6. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    7. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    8. Grace Dehner & Mark K. McBeth & Rae Moss & Irene van Woerden, 2023. "A Zero-Carbon Nuclear Energy Future? Lessons Learned from Perceptions of Climate Change and Nuclear Waste," Energies, MDPI, vol. 16(4), pages 1-16, February.
    9. Heuson, Clemens & Gawel, Erik & Gebhardt, Oliver & Hansjürgens, Bernd & Lehmann, Paul & Meyer, Volker & Schwarze, Reimund, 2012. "Fundamental questions on the economics of climate adaptation: Outlines of a new research programme," UFZ Reports 05/2012, Helmholtz Centre for Environmental Research (UFZ).
    10. Dirk Rübbelke & Stefan Vögele, 2013. "Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?," Climatic Change, Springer, vol. 116(2), pages 191-206, January.
    11. Solveig Glomsrød & Taoyuan Wei & Torben Mideksa & Bjørn Samset, 2015. "Energy market impacts of nuclear power phase-out policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1511-1527, December.
    12. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    13. Shuangling Wang & Wanshun Zhang & Fajin Chen, 2019. "Simulation of Drainage Capacity in a Coastal Nuclear Power Plant under Extreme Rainfall and Tropical Storm," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    14. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    15. Asian Development Bank (ADB), 2012. "Adaptation to Climate Change: The Case of A Combined Cycle Power Plant," ADB Reports RPT124612, Asian Development Bank (ADB), revised 04 Feb 2014.
    16. Csereklyei, Zsuzsanna, 2014. "Measuring the impact of nuclear accidents on energy policy," Ecological Economics, Elsevier, vol. 99(C), pages 121-129.
    17. Sally Brown & Susan Hanson & Robert Nicholls, 2014. "Implications of sea-level rise and extreme events around Europe: a review of coastal energy infrastructure," Climatic Change, Springer, vol. 122(1), pages 81-95, January.
    18. Matteo Vagnoli & Francesco Di Maio & Enrico Zio, 2018. "Ensembles of climate change models for risk assessment of nuclear power plants," Journal of Risk and Reliability, , vol. 232(2), pages 185-200, April.
    19. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    20. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.