IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v136y2020ics0301421519304859.html
   My bibliography  Save this article

Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model

Author

Listed:
  • Zeppini, Paolo
  • van den Bergh, Jeroen C.J.M.

Abstract

We develop a stochastic decision model to analyse the global competitive dynamics of fossil fuels and renewable energy. It describes coal, oil/gas, solar and wind. These differ not only in pollution intensities but also in profitability and innovation potential. The model accounts for the effect of learning curves, path-dependence and climate policies. Adoption shares endogenously affect agents' utility through increasing returns to adoption, learning, and a ‘peak oil’ capacity constraint. We find that peak oil induces a transition to coal rather than renewable energy, which worsens climate change. By introducing climate policies - such as a carbon tax, market adoption or R&D subsidies for renewables, and eliminating existing subsidies for fossil fuels - we identify potential transition patterns to a low-carbon energy system. Model analysis clarifies two main features of climate policies: which ones solve the climate problem, i.e. do not surpass the critical carbon budget; and how uncertain or variable are final market shares of energy sources.

Suggested Citation

  • Zeppini, Paolo & van den Bergh, Jeroen C.J.M., 2020. "Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model," Energy Policy, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:enepol:v:136:y:2020:i:c:s0301421519304859
    DOI: 10.1016/j.enpol.2019.110907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mr. David Coady & Ian W.H. Parry & Louis Sears & Baoping Shang, 2015. "How Large Are Global Energy Subsidies?," IMF Working Papers 2015/105, International Monetary Fund.
    2. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    3. Zeppini, Paolo, 2015. "A discrete choice model of transitions to sustainable technologies," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 187-203.
    4. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    5. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, September.
    6. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    7. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    8. Stephen P. Holland, 2008. "Modeling Peak Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 61-80.
    9. Paolo Zeppini & Jeroen C. J. M. van den Bergh, 2011. "Competing Recombinant Technologies for Environmental Innovation: Extending Arthur's Model of Lock-In," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 317-334.
    10. Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
    11. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    12. Joeri Rogelj & Michiel Schaeffer & Pierre Friedlingstein & Nathan P. Gillett & Detlef P. van Vuuren & Keywan Riahi & Myles Allen & Reto Knutti, 2016. "Differences between carbon budget estimates unravelled," Nature Climate Change, Nature, vol. 6(3), pages 245-252, March.
    13. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    14. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    15. Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
    16. Brian Arthur, W. & Ermoliev, Yu. M. & Kaniovski, Yu. M., 1987. "Path-dependent processes and the emergence of macro-structure," European Journal of Operational Research, Elsevier, vol. 30(3), pages 294-303, June.
    17. Chapman, Ian, 2014. "The end of Peak Oil? Why this topic is still relevant despite recent denials," Energy Policy, Elsevier, vol. 64(C), pages 93-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Benhong & Wang, Yuanyuan & Wei, Guo, 2020. "Energy eco-efficiency: Is there any spatial correlation between different regions?," Energy Policy, Elsevier, vol. 140(C).
    2. Paolo Zeppini & Jeroen C.J.M. van den Bergh, 2023. "Does COVID-19 Help or Harm the Climate? Modelling Long-run Emissions under Climate and Stimulus Policies," GREDEG Working Papers 2023-09, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    3. Sanjit Dhami & Paolo Zeppini, 2024. "Green Technology Adoption under Uncertainty, Increasing Returns, and Complex Adaptive Dynamics," GREDEG Working Papers 2024-20, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Jihu Lee & Sung-Hun Son & Kibum Kim, 2021. "Eco-Friendly and Economical Solar Heater Design Using Internal Structure and Phase Change Materials," Energies, MDPI, vol. 14(21), pages 1-15, November.
    5. Thu Thuy Nguyen & Van Chien Nguyen, 2021. "Financial Development and Renewables in Southeast Asian Countries—The Role of Organic Waste Materials," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    6. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    7. Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
    8. Yuexiang Yang & Xiaoyu Zheng & Zhen Sun, 2020. "Coal Resource Security Assessment in China: A Study Using Entropy-Weight-Based TOPSIS and BP Neural Network," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    9. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    10. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    11. Pingkuo, Liu & Huan, Peng, 2022. "What drives the green and low-carbon energy transition in China?: An empirical analysis based on a novel framework," Energy, Elsevier, vol. 239(PE).
    12. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    13. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    14. Sinha, Avik & Tiwari, Sunil & Saha, Tanaya, 2024. "Modeling the behavior of renewable energy market: Understanding the moderation of climate risk factors," Energy Economics, Elsevier, vol. 130(C).
    15. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    16. Shantha Indrajith H. Liyanage & Fulu Godfrey Netswera & Abel Motsumi, 2021. "Insights from EU Policy Framework in Aligning Sustainable Finance for Sustainable Development in Africa and Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 459-470.
    17. Boulanouar, Zakaria & Essid, Lobna, 2023. "Extending the resource curse hypothesis to sustainability: Unveiling the environmental impacts of Natural resources rents and subsidies in Fossil Fuel-rich MENA Countries," Resources Policy, Elsevier, vol. 87(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeppini, Paolo, 2015. "A discrete choice model of transitions to sustainable technologies," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 187-203.
    2. Paolo Zeppini, 2014. "A discrete choice model of transitions to sustainable technologies: speed limits and optimal monetary policies," Department of Economics Working Papers 28/14, University of Bath, Department of Economics.
    3. Sanjit Dhami & Paolo Zeppini, 2024. "Green Technology Adoption under Uncertainty, Increasing Returns, and Complex Adaptive Dynamics," GREDEG Working Papers 2024-20, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    5. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    6. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    7. Steven N. Durlauf, 1996. "Statistical Mechanics Approaches to Socioeconomic Behavior," NBER Technical Working Papers 0203, National Bureau of Economic Research, Inc.
    8. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    9. F. Cavalli & A. Naimzada & M. Pireddu, 2017. "An evolutive financial market model with animal spirits: imitation and endogenous beliefs," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1007-1040, November.
    10. Debes, Sebastian & Gareis, Johannes & Mayer, Eric & Rüth, Sebastian, 2014. "Towards a consumer sentiment channel of monetary policy," W.E.P. - Würzburg Economic Papers 91, University of Würzburg, Department of Economics.
    11. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    12. Sanjit Dhami, 2023. "Green Technology Adoption, Complexity, and the Role of Public Policy: A Simple Theoretical Model," CESifo Working Paper Series 10364, CESifo.
    13. Hommes, Cars & Kiseleva, Tatiana & Kuznetsov, Yuri & Verbic, Miroslav, 2012. "Is More Memory In Evolutionary Selection (De)Stabilizing?," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 335-357, June.
    14. Alan Kirman, 2006. "Heterogeneity in Economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(1), pages 89-117, May.
    15. Agliari, Anna & Hommes, Cars H. & Pecora, Nicolò, 2016. "Path dependent coordination of expectations in asset pricing experiments: A behavioral explanation," Journal of Economic Behavior & Organization, Elsevier, vol. 121(C), pages 15-28.
    16. Hommes, Cars & Vroegop, Joris, 2019. "Contagion between asset markets: A two market heterogeneous agents model with destabilising spillover effects," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 314-333.
    17. Anufriev, Mikhail & Bao, Te & Tuinstra, Jan, 2016. "Microfoundations for switching behavior in heterogeneous agent models: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 74-99.
    18. Galanis, Giorgos & Kollias, Iraklis & Leventidis, Ioanis & Lustenhouwer, Joep, 2022. "Generalizing Heuristic Switching Models," Working Papers 0715, University of Heidelberg, Department of Economics.
    19. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    20. Evstigneev, Igor & Taksar, Michael, 2009. "Dynamic interaction models of economic equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 166-182, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:136:y:2020:i:c:s0301421519304859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.