IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v123y2018icp749-758.html
   My bibliography  Save this article

A contingent approach to energy mix policy

Author

Listed:
  • Kim, Jiwon
  • Park, Sangchan

Abstract

Prior work has suggested that cultivating environmentally friendly energy sources can strike a balance between reducing CO2 emissions and fostering economic growth, yet little is known about whether and how energy-mix policies tap into the balance. Energy-mix is important mainly because maintaining energy supplies exclusively using renewable energy sources is not completely feasible. Our study takes a contingent approach to energy mix policies and suggests that the appropriate mix for reducing carbon emissions is not static but dynamic depending on the developmental stages of national economic systems. We follow the Environmental Kuznets Curve (EKC) hypothesis, the most influential model for relating CO2 emissions to economic development, but depart from it by utilizing multifactor productivity data, rather than the conventional measure of GDP per capita, to capture economic growth. Empirical analyses of OECD countries from 1985 to 2013 show that the best energy policies for OECD countries is the gradual decrease in their relative reliance on natural gas, nuclear power, bio and waste fuels in a short run, over the next about 9, 2 and 5 years respectively, whereas solar and wind power can decrease CO2 in a long run as the economy continues to grow.

Suggested Citation

  • Kim, Jiwon & Park, Sangchan, 2018. "A contingent approach to energy mix policy," Energy Policy, Elsevier, vol. 123(C), pages 749-758.
  • Handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:749-758
    DOI: 10.1016/j.enpol.2018.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518305561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Iwata, Hiroki & Okada, Keisuke & Samreth, Sovannroeun, 2010. "Empirical study on the environmental Kuznets curve for CO2 in France: The role of nuclear energy," Energy Policy, Elsevier, vol. 38(8), pages 4057-4063, August.
    4. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    5. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    6. Gregory C. Chow & Jie Li, 2014. "Environmental Kuznets Curve: Conclusive Econometric Evidence for CO 2," Pacific Economic Review, Wiley Blackwell, vol. 19(1), pages 1-7, February.
    7. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    8. Moomaw, William R. & Unruh, Gregory C., 1997. "Are environmental Kuznets curves misleading us? The case of CO2 emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 451-463, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    2. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    3. Djula Borozan & Dubravka Pekanov Starcevic, 2021. "Analysing the Pattern of Productivity Change in the European Energy Industry," Sustainability, MDPI, vol. 13(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    2. Sofien Tiba & Mohamed Frikha, 2020. "EKC and Macroeconomics Aspects of Well-being: a Critical Vision for a Sustainable Future," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1171-1197, September.
    3. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    4. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    5. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    6. Shahbaz, Muhammad & Shahzad, Syed Jawad Hussain & Ahmad, Nawaz & Alam, Shaista, 2016. "Financial development and environmental quality: The way forward," Energy Policy, Elsevier, vol. 98(C), pages 353-364.
    7. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Misbah Sadiq & Desti Kannaiah & Ghulam Yahya Khan & Malik Shahzad Shabbir & Kanwal Bilal & Aysha Zamir, 2023. "Does sustainable environmental agenda matter? The role of globalization toward energy consumption, economic growth, and carbon dioxide emissions in South Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 76-95, January.
    9. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    10. Rabeh Khalfaoui & Aviral Kumar Tiwari & Usman Khalid & Muhammad Shahbaz, 2023. "Nexus between carbon dioxide emissions and economic growth in G7 countries: fresh insights via wavelet coherence analysis," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 66(1), pages 31-66, January.
    11. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    12. Khadiga Mohamed El-Aasar & Shaimaa A. Hanafy, 2018. "Investigating the Environmental Kuznets Curve Hypothesis in Egypt: The Role of Renewable Energy and Trade in Mitigating GHGs," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 177-184.
    13. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    14. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    15. Md. Samsul Alam & Sajid Ali & Naceur Khraief & Syed Jawad Hussain Shahzad, 2021. "Time‐varying causal nexuses between economic growth and CO2 emissions in G‐7 countries: A bootstrap rolling window approach over 1820–2015," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6128-6148, October.
    16. Matias Piaggio & Emilio Padilla & Carolina Roman, 2015. "The long-run relationshiop between C02 emissions and economic activity in a small open economy: Uruguay 1882-2010," Working Papers wpdea1506, Department of Applied Economics at Universitat Autonoma of Barcelona.
    17. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    18. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    19. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    20. Shahbaz, Muhammad & Shafiullah, Muhammad & Papavassiliou, Vassilios G. & Hammoudeh, Shawkat, 2017. "The CO2–growth nexus revisited: A nonparametric analysis for the G7 economies over nearly two centuries," Energy Economics, Elsevier, vol. 65(C), pages 183-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:749-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.