IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v84y2019ics0140988319303196.html
   My bibliography  Save this article

The impact of policy measures on profitability and risk in geothermal energy investments

Author

Listed:
  • Compernolle, Tine
  • Welkenhuysen, Kris
  • Petitclerc, Estelle
  • Maes, Dries
  • Piessens, Kris

Abstract

The development of geothermal energy is below the European National Renewable Energy Action Plans’ anticipated trajectory. High upfront investment costs and multiple sources of uncertainty result in a major investment risk, hampering the mobilization of required capital. To evaluate different policy measures, we developed a geological economic Monte Carlo simulation model that integrates both market and geological uncertainty and a firms’ option to abandon the geothermal project development after a first drilling is made. If the objective is to reduce the abandonment rate of geothermal projects, a heat premium comes forward as the most cost-efficient policy instrument. However, the risk that a project turns out unprofitable is not reduced and windfall profits do occur. In contrast, a recoverable loan reduces both the investment risk and the abandonment rate. An insurance scheme targets the investment risk as well. However, it also increases the abandonment rate and appears as the least cost-efficient policy measure. Considering the different policy performance indicators, a tax rebate is never preferred. Our results demonstrate the intricacies of choosing the correct policy measure, and the need to support such policy decisions with quantitative analyses.

Suggested Citation

  • Compernolle, Tine & Welkenhuysen, Kris & Petitclerc, Estelle & Maes, Dries & Piessens, Kris, 2019. "The impact of policy measures on profitability and risk in geothermal energy investments," Energy Economics, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319303196
    DOI: 10.1016/j.eneco.2019.104524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319303196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.104524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walraven, Daniël & Laenen, Ben & D’haeseleer, William, 2015. "Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled?," Applied Energy, Elsevier, vol. 142(C), pages 144-153.
    2. Ritzenhofen, Ingmar & Spinler, Stefan, 2016. "Optimal design of feed-in-tariffs to stimulate renewable energy investments under regulatory uncertainty — A real options analysis," Energy Economics, Elsevier, vol. 53(C), pages 76-89.
    3. Vogt, Christian & Iwanowski-Strahser, Katja & Marquart, Gabriele & Arnold, Juliane & Mottaghy, Darius & Pechnig, Renate & Gnjezda, Daniel & Clauser, Christoph, 2013. "Modeling contribution to risk assessment of thermal production power for geothermal reservoirs," Renewable Energy, Elsevier, vol. 53(C), pages 230-241.
    4. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    5. Santiago, Katarina Tatiana Marques & Campello de Souza, Fernando Menezes & de Carvalho Bezerra, Diogo, 2014. "A strong argument for using non-commodities to generate electricity," Energy Economics, Elsevier, vol. 43(C), pages 34-40.
    6. Kangas, Hanna-Liisa & Lintunen, Jussi & Pohjola, Johanna & Hetemäki, Lauri & Uusivuori, Jussi, 2011. "Investments into forest biorefineries under different price and policy structures," Energy Economics, Elsevier, vol. 33(6), pages 1165-1176.
    7. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    8. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    9. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    10. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    11. Franco, Alessandro & Vaccaro, Maurizio, 2012. "An integrated “Reservoir-Plant” strategy for a sustainable and efficient use of geothermal resources," Energy, Elsevier, vol. 37(1), pages 299-310.
    12. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Hicks, Michael A., 2015. "A prototype design model for deep low-enthalpy hydrothermal systems," Renewable Energy, Elsevier, vol. 77(C), pages 408-422.
    13. Walraven, Daniël & Laenen, Ben & D'haeseleer, William, 2015. "Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources," Energy, Elsevier, vol. 80(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Tyszer & Wiesław Bujakowski & Barbara Tomaszewska & Bogusław Bielec, 2020. "Geothermal Water Management Using the Example of the Polish Lowland (Poland)—Key Aspects Related to Co-Management of Drinking and Geothermal Water," Energies, MDPI, vol. 13(10), pages 1-13, May.
    2. Gkousis, Spiros & Welkenhuysen, Kris & Harcouët-Menou, Virginie & Pogacnik, Justin & Laenen, Ben & Compernolle, Tine, 2024. "Integrated geo-techno-economic and real options analysis of the decision to invest in a medium enthalpy deep geothermal heating plant. A case study in Northern Belgium," Energy Economics, Elsevier, vol. 134(C).
    3. Muhammad Amin Hasan & Ali Sajid & Aman Abbas Ghouri & Talal Ahmed Khan, 2023. "Re-Examining Working Capital Management and Firm Performance Nexus: Does Investment Policy Matter?," Journal of Economic Impact, Science Impact Publishers, vol. 5(3), pages 269-278.
    4. Pratiwi, Astu Sam & Trutnevyte, Evelina, 2022. "Decision paths to reduce costs and increase economic impact of geothermal district heating in Geneva, Switzerland," Applied Energy, Elsevier, vol. 322(C).
    5. Spyridon Karytsas & Dimitrios Mendrinos & Theoni I. Oikonomou & Ioannis Choropanitis & Attila Kujbus & Constantine Karytsas, 2022. "Examining the Development of a Geothermal Risk Mitigation Scheme in Greece," Clean Technol., MDPI, vol. 4(2), pages 1-21, May.
    6. Zhou, Pengfei & Luo, Jie & Cheng, Fei & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of risk priorities for renewable energy investment projects using a hybrid IT2 hesitant fuzzy decision-making approach with alpha cuts," Energy, Elsevier, vol. 224(C).
    7. Ruef, Franziska & Ejderyan, Olivier, 2021. "Rowing, steering or anchoring? Public values for geothermal energy governance," Energy Policy, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    2. Wang, Yang & Voskov, Denis & Khait, Mark & Saeid, Sanaz & Bruhn, David, 2021. "Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field," Renewable Energy, Elsevier, vol. 179(C), pages 641-651.
    3. Hu, Junfei & Chen, Huanyue & Zhou, Peng & Guo, Peng, 2022. "Optimal subsidy level for waste-to-energy investment considering flexibility and uncertainty," Energy Economics, Elsevier, vol. 108(C).
    4. Yu, Shiwei & Li, Zhenxi & Wei, Yi-Ming & Liu, Lancui, 2019. "A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes," Energy, Elsevier, vol. 189(C).
    5. Gkousis, Spiros & Welkenhuysen, Kris & Harcouët-Menou, Virginie & Pogacnik, Justin & Laenen, Ben & Compernolle, Tine, 2024. "Integrated geo-techno-economic and real options analysis of the decision to invest in a medium enthalpy deep geothermal heating plant. A case study in Northern Belgium," Energy Economics, Elsevier, vol. 134(C).
    6. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    7. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    8. Haehl, Christian & Spinler, Stefan, 2018. "Capacity expansion under regulatory uncertainty:A real options-based study in international container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 75-93.
    9. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    10. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    11. Erin Baker & Olaitan Olaleye & Lara Aleluia Reis, 2015. "Decision Frameworks and the Investment in R&D," Working Papers 2015.42, Fondazione Eni Enrico Mattei.
    12. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    13. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    14. Bigerna, Simona & Hagspiel, Verena & Kort, Peter M. & Wen, Xingang, 2023. "How damaging are environmental policy targets in terms of welfare?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 354-372.
    15. Mahmoud A. Eissa & Boping Tian, 2017. "Lobatto-Milstein Numerical Method in Application of Uncertainty Investment of Solar Power Projects," Energies, MDPI, vol. 10(1), pages 1-19, January.
    16. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    17. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    18. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    19. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    20. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319303196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.