IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v40y2013icp911-926.html
   My bibliography  Save this article

A top-down assessment of energy, water and land use in uranium mining, milling, and refining

Author

Listed:
  • Schneider, E.
  • Carlsen, B.
  • Tavrides, E.
  • van der Hoeven, C.
  • Phathanapirom, U.

Abstract

Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

Suggested Citation

  • Schneider, E. & Carlsen, B. & Tavrides, E. & van der Hoeven, C. & Phathanapirom, U., 2013. "A top-down assessment of energy, water and land use in uranium mining, milling, and refining," Energy Economics, Elsevier, vol. 40(C), pages 911-926.
  • Handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:911-926
    DOI: 10.1016/j.eneco.2013.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988313001795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2013.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    2. Chapman, Peter F., 1975. "Energy analysis of nuclear power stations," Energy Policy, Elsevier, vol. 3(4), pages 285-298, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Bidaud & Silvana Mima & S Gabriel & A Monnet & G Mathonnière & Patrick Criqui & M Cuney & P Bruneton, 2015. "Uranium resources, scenarios, nuclear and energy dynamics," Post-Print hal-01241438, HAL.
    2. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    3. Mohan, Aniruddh, 2017. "Whose land is it anyway? Energy futures & land use in India," Energy Policy, Elsevier, vol. 110(C), pages 257-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, E. & Carlsen, B. & Tavrides, E. & van der Hoeven, C. & Phathanapirom, U., 2013. "Measures of the environmental footprint of the front end of the nuclear fuel cycle," Energy Economics, Elsevier, vol. 40(C), pages 898-910.
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    7. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    8. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    9. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    10. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    11. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    12. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    13. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    14. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    15. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    16. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    17. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    18. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    19. Tezuka, Tetsuo & Okushima, Keisuke & Sawa, Takamitsu, 2002. "Carbon tax for subsidizing photovoltaic power generation systems and its effect on carbon dioxide emissions," Applied Energy, Elsevier, vol. 72(3-4), pages 677-688, July.
    20. Mohd Alsaleh & Muhammad Mansur Abdulwakil & Abdul Samad Abdul-Rahim, 2021. "Land-Use Change Impacts from Sustainable Hydropower Production in EU28 Region: An Empirical Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.

    More about this item

    Keywords

    Uranium; Emissions; Environmental impacts;
    All these keywords.

    JEL classification:

    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:911-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.