IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v33y2011i1p111-120.html
   My bibliography  Save this article

A simple state-contingent pricing rule for complex intertemporal externalities

Author

Listed:
  • McKitrick, Ross

Abstract

Some externalities, such as global warming, involve complex relationships between emissions and an environmental state variable, with effects over lags of uncertain length. Coming up with theoretically-motivated and practical policy options in such cases has proven difficult. Deterministic intertemporal general equilibrium models yield what appear to be feasible optimal price paths, but only by assuming away many key uncertainties, nor do they specify how the possibility of new information should affect the policy path. Bayesian models allow limited uncertainty and optimal learning based on observed effects of policy changes, but suggest a discouraging delay before optimal policy can be identified. A full insurance model suggests that risk aversion and 'fat-tailed' probabilities of catastrophe imply an implausibly (or at least impractically) large risk premium, implying that practical policy decisions depend so critically on uncertain parameters as to be unavoidably arbitrary. This paper proposes an entirely new approach based on the observation that the situation giving rise to a complex intertemporal externality also yields an observable state variable that contains information relevant to the identification of the optimal policy path. I derive a simple transformation by which the state variable can yield a good approximation to the optimal externality price. I outline assumptions sufficient to yield the transformation, and present numerical examples that illustrate its ability to follow linear and nonlinear first-best price paths. A specific application to greenhouse gases is proposed.

Suggested Citation

  • McKitrick, Ross, 2011. "A simple state-contingent pricing rule for complex intertemporal externalities," Energy Economics, Elsevier, vol. 33(1), pages 111-120, January.
  • Handle: RePEc:eee:eneeco:v:33:y:2011:i:1:p:111-120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(10)00110-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. David W. J. Thompson & John J. Kennedy & John M. Wallace & Phil D. Jones, 2008. "A large discontinuity in the mid-twentieth century in observed global-mean surface temperature," Nature, Nature, vol. 453(7195), pages 646-649, May.
    3. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    4. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    5. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    7. Richard S. J. Tol & Gary W. Yohe, 2006. "A Review of the Stern Review," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(4), pages 233-250, October.
    8. Quirin Schiermeier, 2007. "Chemists poke holes in ozone theory," Nature, Nature, vol. 449(7161), pages 382-383, September.
    9. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    2. Aliakbari, Elmira & McKitrick, Ross, 2018. "Information aggregation in a prediction market for climate outcomes," Energy Economics, Elsevier, vol. 74(C), pages 97-106.
    3. Stagnaro, Carlo, 2008. "Europe 2020: an Alternative Proposal," MPRA Paper 48743, University Library of Munich, Germany.
    4. Moreno-Cruz, Juan B. & Wagner, Gernot & Keith, David w., 2017. "An Economic Anatomy of Optimal Climate Policy," Working Paper Series rwp17-028, Harvard University, John F. Kennedy School of Government.
    5. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newbold, Stephen C. & Marten, Alex L., 2014. "The value of information for integrated assessment models of climate change," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 111-123.
    2. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    3. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    4. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    5. Aliakbari, Elmira & McKitrick, Ross, 2018. "Information aggregation in a prediction market for climate outcomes," Energy Economics, Elsevier, vol. 74(C), pages 97-106.
    6. David Anthoff & Richard Tol, 2009. "The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 351-367, July.
    7. Masako Ikefuji & Roger J. A. Laeven & Jan R. Magnus & Chris Muris, 2011. "Weitzman meets Nordhaus: Expected utility and catastrophic risk in a stochastic economy-climate model," ISER Discussion Paper 0825, Institute of Social and Economic Research, Osaka University.
    8. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    9. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    10. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    11. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    12. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    13. Simon Dietz, 2009. "High impact, low probability? An empirical analysis of risk in the economics of climate change," GRI Working Papers 9, Grantham Research Institute on Climate Change and the Environment.
    14. Simon Dietz, 2011. "High impact, low probability? An empirical analysis of risk in the economics of climate change," Climatic Change, Springer, vol. 108(3), pages 519-541, October.
    15. Wonjun Chang & Thomas F. Rutherford, 2017. "Catastrophic Thresholds, Bayesian Learning And The Robustness Of Climate Policy Recommendations," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-23, November.
    16. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    17. Iverson, Terrence, 2012. "Communicating Trade-offs amid Controversial Science: Decision Support for Climate Policy," Ecological Economics, Elsevier, vol. 77(C), pages 74-90.
    18. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    19. Charles F. Mason & Neil Wilmot, 2015. "Modeling Damages in Climate Policy Models: Temperature-Based or Carbon-Based?," CESifo Working Paper Series 5287, CESifo.
    20. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:33:y:2011:i:1:p:111-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.