IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v138y2024ics0140988324005243.html
   My bibliography  Save this article

The marginal generation and emissions impacts of purchased hydropower: Evidence from the Colorado River Storage Project

Author

Listed:
  • Kaczmarski, Jesse I.
  • Jones, Benjamin A.

Abstract

As the electric grid continues to modernize, utilities and regulators are continuing to emphasize low-emission, low-cost resources. While wind, solar, and storage are capacity additive targets, marketed hydropower continues to be an attractive source of reliable power for utilities. These utilities rely on hydropower as a cheaper and cleaner alternative to traditional fossil fuel generation. However, hydropower production is subject to continuously evolving ecological and regulatory constraints. Understanding the economic benefits of hydropower purchases to utilities and their customers is useful in the discourse surrounding management of hydroelectric dams. To date, there has been no work that directly examines the fossil fuel generation, emissions, and regional air quality impacts associated with hydropower purchases. In this study, we address this paucity of research by conducting a case study of a non-profit power wholesaler engaged in long-term hydropower purchase agreements in the western United States. We collect hourly generation, stack-level emissions (CO2, SO2, and NOX), and regional ground-level ozone data across a five-year period to assess how purchases of marketed hydropower effect these outcomes. We quantify the average hourly offsets of purchased hydropower, solar, and wind generation. We find that most of the purchased hydropower is passed through to other utility customers, but that overall, significant reductions in fossil fuel generation (particularly coal), emissions, and regional ozone levels occur. We conclude by approximating conservative, lower-bound health incidence benefits associated with marketed hydropower purchases. Our results are useful to policymakers, utilities, and other stakeholders for better understanding the potential benefits of marketed hydropower.

Suggested Citation

  • Kaczmarski, Jesse I. & Jones, Benjamin A., 2024. "The marginal generation and emissions impacts of purchased hydropower: Evidence from the Colorado River Storage Project," Energy Economics, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:eneeco:v:138:y:2024:i:c:s0140988324005243
    DOI: 10.1016/j.eneco.2024.107816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324005243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lynne Y. Lewis & Curtis Bohlen & Sarah Wilson, 2008. "Dams, Dam Removal, And River Restoration: A Hedonic Property Value Analysis," Contemporary Economic Policy, Western Economic Association International, vol. 26(2), pages 175-186, April.
    2. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    3. Miguel Castro, 2019. "Is a Wetter Grid a Greener Grid? Estimating Emissions Offsets for Wind and Solar Power in the Presence of Large Hydroelectric Capacity," The Energy Journal, , vol. 40(1), pages 213-246, January.
    4. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
    5. Levinson, Arik, 2012. "Valuing public goods using happiness data: The case of air quality," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 869-880.
    6. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, , vol. 34(1), pages 155-176, January.
    7. Gonzalez-Caban, Armando & Loomis, John, 1997. "Economic benefits of maintaining ecological integrity of Rio Mameyes, in Puerto Rico," Ecological Economics, Elsevier, vol. 21(1), pages 63-75, April.
    8. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    9. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    10. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.
    11. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    12. Kataria, Mitesh, 2009. "Willingness to pay for environmental improvements in hydropower regulated rivers," Energy Economics, Elsevier, vol. 31(1), pages 69-76, January.
    13. Miguel Castro, 2019. "Is a Wetter Grid a Greener Grid? Estimating Emissions Offsets for Wind and Solar Power in the Presence of Large Hydroelectric Capacity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    15. de Faria, Felipe A.M. & Davis, Alex & Severnini, Edson & Jaramillo, Paulina, 2017. "The local socio-economic impacts of large hydropower plant development in a developing country," Energy Economics, Elsevier, vol. 67(C), pages 533-544.
    16. Jones, Benjamin A. & Berrens, Robert P. & Jenkins-Smith, Hank & Silva, Carol & Ripberger, Joe & Carlson, Deven & Gupta, Kuhika & Wehde, Wesley, 2018. "In search of an inclusive approach: Measuring non-market values for the effects of complex dam, hydroelectric and river system operations," Energy Economics, Elsevier, vol. 69(C), pages 225-236.
    17. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    18. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    2. Rivera, Nathaly M. & Ruiz-Tagle, J. Cristobal & Spiller, Elisheba, 2024. "The health benefits of solar power generation: Evidence from Chile," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    3. Concettini, Silvia & Creti, Anna & Gualdi, Stanislao, 2022. "Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: The case of Italy," Energy Economics, Elsevier, vol. 114(C).
    4. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    5. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
    6. Brehm, Paul, 2019. "Natural gas prices, electric generation investment, and greenhouse gas emissions," Resource and Energy Economics, Elsevier, vol. 58(C).
    7. Novan, Kevin & Wang, Yingzi, 2024. "Estimates of the marginal curtailment rates for solar and wind generation," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    8. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    9. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    10. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    11. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    12. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    13. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    14. Cullen, Joseph A. & Reynolds, Stanley S., 2023. "Market dynamics and investment in the electricity sector," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    15. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    16. Brittany Tarufelli & Ben Gilbert, 2019. "Leakage in Regional Climate Policy? Implications of Electricity Market Design," Working Papers 2019-07, Colorado School of Mines, Division of Economics and Business, revised Dec 2021.
    17. Jan Abrell & Mirjam Kosch, 2022. "The Impact of Carbon Prices on Renewable Energy Support," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(3), pages 531-563.
    18. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    19. Carlini, Federico & Christensen, Bent Jesper & Datta Gupta, Nabanita & Santucci de Magistris, Paolo, 2023. "Climate, wind energy, and CO2 emissions from energy production in Denmark," Energy Economics, Elsevier, vol. 125(C).
    20. Grant D. Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, , vol. 37(2), pages 93-108, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:138:y:2024:i:c:s0140988324005243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.