IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v134y2024ics0140988324002652.html
   My bibliography  Save this article

Effects of time-of-use pricing for residential customers and wholesale market consequences in South Korea

Author

Listed:
  • Jang, Heesun
  • Moon, Seongman
  • Kim, Jihyo

Abstract

Using a large-scale pilot test on time-of-use (TOU) pricing for residential customers, this study analyzes the effects of TOU pricing on the load patterns of residential customers and on producer surplus in South Korea. We estimate the difference in the electricity demand functions of residential customers across peak, intermediate, and off-peak periods before and after TOU pricing. In addition, we assess the supply curve in the wholesale electricity market and calculate the changes in electricity purchase costs by integrating the supply curve over the range of consumption changes across the periods. This study simulates the effects of TOU pricing on producer surplus that would be obtained if all residential customers in South Korea switch from increasing block pricing to TOU pricing. Our results show that TOU pricing can be an effective measure for load transfer and simultaneously increase producer surplus. We find that although the revenue of electric utility generally decreases, the cost savings are greater and thus producer surplus increases. The results can be a valuable reference for the South Korean government regarding the nationwide expansion of TOU for residential electricity in the future.

Suggested Citation

  • Jang, Heesun & Moon, Seongman & Kim, Jihyo, 2024. "Effects of time-of-use pricing for residential customers and wholesale market consequences in South Korea," Energy Economics, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324002652
    DOI: 10.1016/j.eneco.2024.107557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324002652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Sergici, Sanem & Lessem, Neil & Mountain, Dean, 2015. "Impact measurement of tariff changes when experimentation is not an option—A case study of Ontario, Canada," Energy Economics, Elsevier, vol. 52(PA), pages 39-48.
    2. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    3. Kathleen Spees & Lester Lave, 2008. "Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing," The Energy Journal, , vol. 29(2), pages 101-122, April.
    4. Kenneth Train & Gil Mehrez, 1994. "Optional Time-of-Use Prices for Electricity: Econometric Analysis of Surplus and Pareto Impacts," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 263-283, Summer.
    5. Kim, Jihyo & Lee, Soomin & Jang, Heesun, 2022. "Lessons from residential electricity demand analysis on the time of use pricing experiment in South Korea," Energy Economics, Elsevier, vol. 113(C).
    6. Olmstead, Sheila M., 2009. "Reduced-Form Versus Structural Models of Water Demand Under Nonlinear Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 84-94.
    7. Heesun Jang, 2020. "Ownership, pricing, and productivity: the case of electric distribution cooperatives," Empirical Economics, Springer, vol. 59(2), pages 977-1001, August.
    8. Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
    9. Song, Yong Hyun & Kim, Hyun Joong & Kim, Seung Wan & Jin, Young Gyu & Yoon, Yong Tae, 2018. "How to find a reasonable energy transition strategy in Korea?: Quantitative analysis based on power market simulation," Energy Policy, Elsevier, vol. 119(C), pages 396-409.
    10. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    11. Hill, Lawrence J., 1991. "Residential time-of-use pricing as a load management strategy : Effectiveness and applicability," Utilities Policy, Elsevier, vol. 1(4), pages 308-318, July.
    12. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    13. Mostafa Baladi, S. & Herriges, Joseph A. & Sweeney, Thomas J., 1998. "Residential response to voluntary time-of-use electricity rates," Resource and Energy Economics, Elsevier, vol. 20(3), pages 225-244, September.
    14. Dennis Aigner, 1985. "The Residential Electricity Time-of-Use Pricing Experiments: What Have We Learned?," NBER Chapters, in: Social Experimentation, pages 11-54, National Bureau of Economic Research, Inc.
    15. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    16. Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Minseok Jang & Hyun Cheol Jeong & Taegon Kim & Dong Hee Suh & Sung-Kwan Joo, 2021. "Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential Electricity Consumption Based on Demographic Characteristics and Load Shape," Energies, MDPI, vol. 14(22), pages 1-15, November.
    18. Aigner, Dennis J & Ghali, Khalifa, 1989. "Self-Selection in the Residential Electricity Time-of-Use Pricing Experiments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 131-144, Supplemen.
    19. John A. Nordin, 1976. "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 719-721, Autumn.
    20. Ahmad Faruqui & Sanem Sergici & Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, , vol. 35(1), pages 137-160, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, So Young & Woo, JongRoul & Lee, Wonjong, 2024. "Assessing optimized time-of-use pricing for electric vehicle charging in deep vehicle-grid integration system," Energy Economics, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jihyo & Lee, Soomin & Jang, Heesun, 2022. "Lessons from residential electricity demand analysis on the time of use pricing experiment in South Korea," Energy Economics, Elsevier, vol. 113(C).
    2. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    3. Qiu, Yueming & Colson, Gregory & Wetzstein, Michael E., 2017. "Risk preference and adverse selection for participation in time-of-use electricity pricing programs," Resource and Energy Economics, Elsevier, vol. 47(C), pages 126-142.
    4. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    5. Makena Coffman & Paul Bernstein & Derek Stenclik & Sherilyn Wee & Aida Arik, 2018. "Integrating Renewable Energy with Time Varying Pricing," Working Papers 2018-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Makena Coffman & Paul Bernstein & Sherilyn Wee & Aida Arik, 2016. "Estimating the Opportunity for Load-Shifting in Hawaii: An Analysis of Proposed Residential Time-of-Use Rates," Working Papers 2016-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    8. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    9. Lucinda, Claudio Ribeiro & Anuatti Neto, Francisco, 2014. "Non-linear Demand and Price: An Empirical Analysis of the Brazilian Industrial Electricity Consumption," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(2), November.
    10. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    11. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    12. Han, Xintong & Liu, Zimin & Wang, Tong, 2023. "Nonlinear pricing in multidimensional context: An empirical analysis of energy consumption," International Journal of Industrial Organization, Elsevier, vol. 91(C).
    13. Takanori Ida & Wenjie Wang, 2014. "A Field Experiment on Dynamic Electricity Pricing in Los Alamos:Opt-in Versus Opt-out," Discussion papers e-14-010, Graduate School of Economics Project Center, Kyoto University.
    14. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    15. Venizelou, Venizelos & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2020. "Methodology for deploying cost-optimum price-based demand side management for residential prosumers," Renewable Energy, Elsevier, vol. 153(C), pages 228-240.
    16. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2018. "Testing the behavior of rationally inattentive consumers in a residential water market," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 344-359.
    17. R. Aaron Hrozencik & Dale T. Manning & Jordan F. Suter & Christopher Goemans, 2022. "Impacts of Block‐Rate Energy Pricing on Groundwater Demand in Irrigated Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 404-427, January.
    18. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2017. "Modeling Rational But Inattentive Consumer’s Residential Water Demand," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258555, Agricultural and Applied Economics Association.
    19. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    20. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).

    More about this item

    Keywords

    Time-of-use pricing; Residential electricity; Wholesale market; Load transfer; Producer surplus;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324002652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.