IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v32y2015icp201-209.html
   My bibliography  Save this article

Financial weather derivatives for corn production in Northern China: A comparison of pricing methods

Author

Listed:
  • Sun, Baojing
  • van Kooten, G. Cornelis

Abstract

The focus in this study is on the pricing of financial derivatives for hedging weather risks in crop production. Employing data from an earlier study, we compare different methods for pricing weather derivative options based on growing degree days (GDDs). We employ average daily temperatures to derive GDDs using three approaches: (1) An econometric approach with a sine function; (2) Monte Carlo simulation with a sine function and three methods to estimate the mean-reversion parameter; and (3) a historic approach (burn analysis) based on a 10-year moving average of GDDs. Results indicate that the historical average method provides the best fit, followed by the stochastic process with a high mean reversion speed, and, finally, the approach using the econometrically estimated sine function. Depending on the method used, premiums for weather derivative options vary from $21.27 to $24.39 per GDD index contract.

Suggested Citation

  • Sun, Baojing & van Kooten, G. Cornelis, 2015. "Financial weather derivatives for corn production in Northern China: A comparison of pricing methods," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 201-209.
  • Handle: RePEc:eee:empfin:v:32:y:2015:i:c:p:201-209
    DOI: 10.1016/j.jempfin.2015.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539815000328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2015.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    2. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    3. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    4. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    5. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    6. Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
    7. Hung‐Hsi Huang & Yung‐Ming Shiu & Pei‐Syun Lin, 2008. "HDD and CDD option pricing with market price of weather risk for Taiwan," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(8), pages 790-814, August.
    8. Ahmet Goncu, 2011. "Pricing temperature-based weather contracts: an application to China," Applied Economics Letters, Taylor & Francis Journals, vol. 18(14), pages 1349-1354.
    9. Turvey, Calum G. & Kong, Rong & Belltawn, Burgen, 2009. "Weather Risk and the Viability of Weather Insurance In Western China," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49362, Agricultural and Applied Economics Association.
    10. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    2. Ai-Ju Shao & Tai-Yi Yu, 2022. "Spatial delineation approach to weather derivatives with three multivariate manners," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1227-1245, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.
    2. Sun, Baojing, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the underlying Weather Index," Working Papers 263197, University of Victoria, Resource Economics and Policy.
    3. Sun, Baojing, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the Underlying Weather Index," Working Papers 257083, University of Victoria, Resource Economics and Policy.
    4. Baojing Sun, 2017. "Financial Weather Derivatives for Corn Production in Northeastern China: Modelling the underlying Weather Index," Working Papers 2017-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    5. Baojing Sun & Changhao Guo & G. Cornelis van Kooten, 2013. "Weather Derivatives and Crop Insurance in China," Working Papers 2013-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    7. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    8. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    9. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    10. Wei Yuan & Ahmet Göncü & Giray Ökten, 2015. "Estimating sensitivities of temperature-based weather derivatives," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1942-1955, April.
    11. repec:hum:wpaper:sfb649dp2009-046 is not listed on IDEAS
    12. Benth, Fred & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers 2009-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    16. Markus Stowasser, 2011. "Modelling rain risk: a multi-order Markov chain model approach," Journal of Risk Finance, Emerald Group Publishing, vol. 13(1), pages 45-60, December.
    17. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    18. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
    19. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    20. Alessio Giorgini & Rogemar S. Mamon & Marianito R. Rodrigo, 2021. "A Stochastic Harmonic Oscillator Temperature Model for the Valuation of Weather Derivatives," Mathematics, MDPI, vol. 9(22), pages 1-15, November.
    21. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.

    More about this item

    Keywords

    Agricultural finance; Stochastic processes; Pricing weather options; Growing degree days for corn production;
    All these keywords.

    JEL classification:

    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:32:y:2015:i:c:p:201-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.