IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v18y2011i3p522-532.html
   My bibliography  Save this article

Modeling structural changes in the volatility process

Author

Listed:
  • Frijns, Bart
  • Lehnert, Thorsten
  • Zwinkels, Remco C.J.

Abstract

GARCH-type models have been very successful in describing the volatility dynamics of financial return series for short periods of time. However, the time-varying behavior of investors, for example, may cause the structure of volatility to change and the assumption of stationarity is no longer plausible. To deal with this issue, the current paper proposes a conditional volatility model with time-varying coefficients based on a multinomial switching mechanism. By giving more weight to either the persistence or shock term in a GARCH model, conditional on their relative ability to forecast a benchmark volatility measure, the switching reinforces the persistent nature of the GARCH model. The estimation of this benchmark volatility targeting or BVT-GARCH model for Dow 30 stocks indicates that the switching model is able to outperform a number of relevant GARCH setups, both in- and out-of-sample, also without any informational advantages.

Suggested Citation

  • Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2011. "Modeling structural changes in the volatility process," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 522-532, June.
  • Handle: RePEc:eee:empfin:v:18:y:2011:i:3:p:522-532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539811000065
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    3. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    4. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    5. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    6. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    7. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    8. Cristina Amado & Timo Teräsvirta, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," NIPE Working Papers 03/2008, NIPE - Universidade do Minho.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    11. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    12. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    13. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    14. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    15. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    16. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    17. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karanasos, Menelaos & Paraskevopoulos, Alexandros G. & Menla Ali, Faek & Karoglou, Michail & Yfanti, Stavroula, 2014. "Modelling stock volatilities during financial crises: A time varying coefficient approach," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 113-128.
    2. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.
    3. BOUSALAM, Issam & HAMZAOUI, Moustapha & ZOUHAYR, Otman, 2016. "Forecasting Daily Stock Volatility Using GARCH-CJ Type Models with Continuous and Jump Variation," MPRA Paper 69636, University Library of Munich, Germany.
    4. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
    5. Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2018. "Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 88-100, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thorsten Lehnert & Bart Frijns & Remco Zwinkels, 2009. "A Volatility Targeting GARCH model with Time-Varying Coefficients," LSF Research Working Paper Series 09-08, Luxembourg School of Finance, University of Luxembourg.
    2. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    3. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    4. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    5. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    6. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    8. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    9. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    10. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    11. ter Ellen, Saskia & Hommes, Cars H. & Zwinkels, Remco C.J., 2021. "Comparing behavioural heterogeneity across asset classes," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 747-769.
    12. Saskia ter Ellen & Willem F. C. Verschoor, 2018. "Heterogeneous Beliefs and Asset Price Dynamics: A Survey of Recent Evidence," Dynamic Modeling and Econometrics in Economics and Finance, in: Fredj Jawadi (ed.), Uncertainty, Expectations and Asset Price Dynamics, pages 53-79, Springer.
    13. Cars Hommes, 2010. "The heterogeneous expectations hypothesis: some evidence from the lab," Post-Print hal-00753041, HAL.
    14. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    15. Alex YiHou Huang, 2012. "Volatility forecasting by quantile regression," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 423-433, February.
    16. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    17. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    18. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    19. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    20. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    21. Schmitt, Noemi, 2018. "Heterogeneous expectations and asset price dynamics," BERG Working Paper Series 134, Bamberg University, Bamberg Economic Research Group.

    More about this item

    Keywords

    GARCH Time varying coefficients Multinomial logit;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:18:y:2011:i:3:p:522-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.