IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v95y1996i3p631-640.html
   My bibliography  Save this article

Setup minimising conditions in the trim loss problem

Author

Listed:
  • Diegel, Adolf
  • Montocchio, Edouard
  • Walters, Edward
  • van Schalkwyk, Sias
  • Naidoo, Spurs

Abstract

No abstract is available for this item.

Suggested Citation

  • Diegel, Adolf & Montocchio, Edouard & Walters, Edward & van Schalkwyk, Sias & Naidoo, Spurs, 1996. "Setup minimising conditions in the trim loss problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 631-640, December.
  • Handle: RePEc:eee:ejores:v:95:y:1996:i:3:p:631-640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(95)00303-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    2. Haessler, Robert W. & Sweeney, Paul E., 1991. "Cutting stock problems and solution procedures," European Journal of Operational Research, Elsevier, vol. 54(2), pages 141-150, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    2. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    3. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    4. Diegel, Adolf & Miller, Garth & Montocchio, Edouard & van Schalkwyk, Sias & Diegel, Olaf, 2006. "Enforcing minimum run length in the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 708-721, June.
    5. Luka Tomat & Mirko Gradišar, 2017. "One-dimensional stock cutting: optimization of usable leftovers in consecutive orders," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 473-489, June.
    6. Hajizadeh, Iman & Lee, Chi-Guhn, 2007. "Alternative configurations for cutting machines in a tube cutting mill," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1385-1396, December.
    7. Pinar Keskinocak & Frederick Wu & Richard Goodwin & Sesh Murthy & Rama Akkiraju & Santhosh Kumaran & Annap Derebail, 2002. "Scheduling Solutions for the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 249-259, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    2. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    3. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    4. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    5. Gradisar, Miro & Kljajic, Miroljub & Resinovic, Gortan & Jesenko, Joze, 1999. "A sequential heuristic procedure for one-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 114(3), pages 557-568, May.
    6. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.
    7. Diegel, Adolf & Miller, Garth & Montocchio, Edouard & van Schalkwyk, Sias & Diegel, Olaf, 2006. "Enforcing minimum run length in the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 708-721, June.
    8. Gradisar, Miro & Resinovic, Gortan & Kljajic, Miroljub, 1999. "A hybrid approach for optimization of one-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 119(3), pages 719-728, December.
    9. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    10. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    11. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    12. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    13. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    14. Pinar Keskinocak & Frederick Wu & Richard Goodwin & Sesh Murthy & Rama Akkiraju & Santhosh Kumaran & Annap Derebail, 2002. "Scheduling Solutions for the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 249-259, April.
    15. J Levine & F Ducatelle, 2004. "Ant colony optimization and local search for bin packing and cutting stock problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 705-716, July.
    16. Cizman, Anton & Cernetic, Janko, 2004. "Improving competitiveness in veneers production by a simple-to-use DSS," European Journal of Operational Research, Elsevier, vol. 156(1), pages 241-260, July.
    17. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    18. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    19. Sesh Murthy & Rama Akkiraju & Richard Goodwin & Pinar Keskinocak & John Rachlin & Frederick Wu & James Yeh & Robert Fuhrer & Santhosh Kumaran & Alok Aggarwal & Martin Sturzenbecker & Ranga Jayaraman &, 1999. "Cooperative Multiobjective Decision Support for the Paper Industry," Interfaces, INFORMS, vol. 29(5), pages 5-30, October.
    20. Hopper, E. & Turton, B. C. H., 2001. "An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 34-57, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:95:y:1996:i:3:p:631-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.