IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i1p206-221.html
   My bibliography  Save this article

Mixed-model sequencing with stochastic failures: A case study for automobile industry

Author

Listed:
  • Yilmazlar, I. Ozan
  • Kurz, Mary E.
  • Rahimian, Hamed

Abstract

In the automotive industry, the sequence of vehicles to be produced is determined ahead of the production day. However, there are some vehicles, failed vehicles, that cannot be produced due to some reasons such as material shortage or paint failure. These vehicles are pulled out of the sequence, and the vehicles in the succeeding positions are moved forward, potentially resulting in challenges for logistics or other scheduling concerns. This paper proposes a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provides improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the extensive equivalent formulation with an off-the-shelf solver. Moreover, we provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high-quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20% for both small- and large-sized instances.

Suggested Citation

  • Yilmazlar, I. Ozan & Kurz, Mary E. & Rahimian, Hamed, 2024. "Mixed-model sequencing with stochastic failures: A case study for automobile industry," European Journal of Operational Research, Elsevier, vol. 319(1), pages 206-221.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:206-221
    DOI: 10.1016/j.ejor.2024.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Candace Arai Yano & Ram Rachamadugu, 1991. "Sequencing to Minimize Work Overload in Assembly Lines with Product Options," Management Science, INFORMS, vol. 37(5), pages 572-586, May.
    2. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    3. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    4. Li-Hui Tsai, 1995. "Mixed-Model Sequencing to Minimize Utility Work and the Risk of Conveyor Stoppage," Management Science, INFORMS, vol. 41(3), pages 485-495, March.
    5. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    6. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    7. Hottenrott, Andreas & Waidner, Leon & Grunow, Martin, 2021. "Robust car sequencing for automotive assembly," European Journal of Operational Research, Elsevier, vol. 291(3), pages 983-994.
    8. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    9. Scholl, Armin & Klein, Robert & Domschke, Wolfgang, 1998. "Pattern based vocabulary building for effectively sequencing mixed model assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9365, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Frits K. Pil & Matthias Holweg, 2004. "Linking Product Variety to Order-Fulfillment Strategies," Interfaces, INFORMS, vol. 34(5), pages 394-403, October.
    11. Dar-El, Ezey M, 1978. "Mixed-model assembly line sequencing problems," Omega, Elsevier, vol. 6(4), pages 313-323.
    12. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    13. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahua Zhang & Xuemei Liu & Beikun Zhang, 2024. "Mathematical modelling and a discrete cuckoo search particle swarm optimization algorithm for mixed model sequencing problem with interval task times," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3837-3856, December.
    2. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    4. Bautista, Joaquín & Cano, Alberto & Alfaro, Rocío, 2012. "Models for MMSP-W considering workstation dependencies: A case study of Nissan’s Barcelona plant," European Journal of Operational Research, Elsevier, vol. 223(3), pages 669-679.
    5. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
    6. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.
    7. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    8. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    9. Tobias Kreiter & Ulrich Pferschy, 2020. "Integer programming models versus advanced planning business software for a multi-level mixed-model assembly line problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1141-1177, September.
    10. Asieh Varyani & Mohsen Salehi & Meysam Heydari Gharahcheshmeh, 2024. "Optimizing Mixed-Model Synchronous Assembly Lines with Bipartite Sequence-Dependent Setup Times in Advanced Manufacturing," Energies, MDPI, vol. 17(12), pages 1-19, June.
    11. Pontes, Lara & Neves, Carlos & Subramanian, Anand & Battarra, Maria, 2024. "The maximum length car sequencing problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 707-717.
    12. Arnd Huchzermeier & Tobias Mönch, 2023. "Mixed‐model assembly lines with variable takt and open stations," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 704-722, March.
    13. Xiaobo, Zhao & Ohno, Katsuhisa, 2000. "Properties of a sequencing problem for a mixed model assembly line with conveyor stoppages," European Journal of Operational Research, Elsevier, vol. 124(3), pages 560-570, August.
    14. Bautista, Joaquin & Cano, Jaime, 2008. "Minimizing work overload in mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 112(1), pages 177-191, March.
    15. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    16. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.
    17. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    18. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    19. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    20. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:206-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.