IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p777-785.html
   My bibliography  Save this article

Repositioning with unreliable carriers: The case of marine chassis equipment at container ports

Author

Listed:
  • Ng, ManWo

Abstract

Chassis shortage and, especially, dislocation have become major recurring challenges for the maritime industry in the U.S. To prevent chassis dislocation, chassis pool managers at container ports can work with third-party repositioning partners to pro-actively reposition chassis between the different chassis storage yards within the port complex. One challenge that arises in practice is that not all repositioning requests made by the chassis pool manager are fulfilled, i.e. repositioning partners can be unreliable. This paper contributes to our understanding of the impact of unreliable repositioning partners on chassis shortages by presenting a stochastic model to describe the day-to-day evolution of chassis at container ports. Expressions for the chassis shortage probability and the expected time until a shortage are rigorously derived. Using a detailed case study employing real-world data, (counterintuitive) managerial insights are revealed and discussed that can be used to help formulate policies when managing chassis.

Suggested Citation

  • Ng, ManWo, 2024. "Repositioning with unreliable carriers: The case of marine chassis equipment at container ports," European Journal of Operational Research, Elsevier, vol. 315(2), pages 777-785.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:777-785
    DOI: 10.1016/j.ejor.2023.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golias, Mihalis M. & Boile, Maria & Theofanis, Sotirios, 2009. "Berth scheduling by customer service differentiation: A multi-objective approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 878-892, November.
    2. Shintani, Koichi & Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2007. "The container shipping network design problem with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 39-59, January.
    3. Ted Gifford & Robert Gremley, 2019. "Chassis Leasing and Selection Policy for Port Operations," Interfaces, INFORMS, vol. 49(4), pages 239-248, July.
    4. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    5. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    6. Yip, Tsz Leung & Sun, Xin Yu & Liu, John J., 2011. "Group and individual heterogeneity in a stochastic frontier model: Container terminal operators," European Journal of Operational Research, Elsevier, vol. 213(3), pages 517-525, September.
    7. Vallada, Eva & Belenguer, Jose Manuel & Villa, Fulgencia & Alvarez-Valdes, Ramon, 2023. "Models and algorithms for a yard crane scheduling problem in container ports," European Journal of Operational Research, Elsevier, vol. 309(2), pages 910-924.
    8. Erdoğan, Güneş & Laporte, Gilbert & Wolfler Calvo, Roberto, 2014. "The static bicycle relocation problem with demand intervals," European Journal of Operational Research, Elsevier, vol. 238(2), pages 451-457.
    9. Maggioni, Francesca & Cagnolari, Matteo & Bertazzi, Luca & Wallace, Stein W., 2019. "Stochastic optimization models for a bike-sharing problem with transshipment," European Journal of Operational Research, Elsevier, vol. 276(1), pages 272-283.
    10. Ng, ManWo, 2017. "Revisiting a class of liner fleet deployment models," European Journal of Operational Research, Elsevier, vol. 257(3), pages 773-776.
    11. ManWo Ng & Wayne K. Talley, 2017. "Chassis inventory management at U.S. container ports:modelling and case study," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5394-5404, September.
    12. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    13. Zhang, Canrong & Wang, Qi & Yuan, Guoping, 2023. "Novel models and algorithms for location assignment for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 308(2), pages 722-737.
    14. Le-Griffin, Hanh D. & Mai, Lam & Griffin, Mark, 2011. "Impact of container chassis management practices in the United States on terminal operational efficiency: An operations and mitigation policy analysis," Research in Transportation Economics, Elsevier, vol. 32(1), pages 90-99.
    15. Zheng, Shiyuan & Jiang, Changmin & Fu, Xiaowen, 2021. "Investment competition on dedicated terminals under demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    16. Lee, Sangyoon & Moon, Ilkyeong, 2020. "Robust empty container repositioning considering foldable containers," European Journal of Operational Research, Elsevier, vol. 280(3), pages 909-925.
    17. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    2. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    3. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    4. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    5. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    6. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    7. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    8. Jeong, Yoonjea & Saha, Subrata & Chatterjee, Debajyoti & Moon, Ilkyeong, 2018. "Direct shipping service routes with an empty container management strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 123-142.
    9. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    10. Zhen, Lu & Tan, Zheyi & Wang, Shuaian & Yi, Wen & Lyu, Junyan, 2021. "Shared mobility oriented open vehicle routing with order radius decision," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 19-33.
    11. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Wetzel, Daniel & Tierney, Kevin, 2024. "Rethinking cyclic structures in liner shipping networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 556-568.
    13. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    14. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Gan, Jinxiang & Zhang, Guochuan & Zhang, Yuhao, 2024. "Bike rebalancing: How to find a balanced matching in the k center problem?," European Journal of Operational Research, Elsevier, vol. 316(3), pages 845-855.
    16. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    17. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    18. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    19. Neumann-Saavedra, Bruno Albert & Mattfeld, Dirk Christian & Hewitt, Mike, 2021. "Assessing the operational impact of tactical planning models for bike-sharing redistribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 216-235.
    20. ManWo Ng & Wayne K. Talley, 2017. "Chassis inventory management at U.S. container ports:modelling and case study," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5394-5404, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:777-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.