IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i1p354-367.html
   My bibliography  Save this article

An integrated bi-objective optimization model accounting for the social acceptance of renewable fuel production networks

Author

Listed:
  • Becker, Tristan
  • Wolff, Michael
  • Linzenich, Anika
  • Engelmann, Linda
  • Arning, Katrin
  • Ziefle, Martina
  • Walther, Grit

Abstract

Renewable liquid fuels produced from biomass, hydrogen, and carbon dioxide play an important role in reaching climate neutrality in the transportation sector. For large-scale deployment, production facilities and corresponding logistics have to be established. However, the implementation of such a large-scale renewable fuel production network requires acceptance by citizens. To gain insights into the structure of efficient and socially accepted renewable fuel production networks, we propose a bi-objective mixed-integer programming model. In addition to an economic objective function, we consider social acceptance as a second objective function. We use results from a conjoint analysis study on the acceptance and preference of renewable fuel production networks, considering the regional topography, facility size, production pathway, and raw material transportation to model social acceptance. We find significant trade-offs between the economic and social acceptance objective. The most favorable solution from a social acceptance perspective is almost twice as expensive as the most efficient economical solution. However, it is possible to strongly increase acceptance at a moderate expense by carefully selecting sites with preferred regional topography.

Suggested Citation

  • Becker, Tristan & Wolff, Michael & Linzenich, Anika & Engelmann, Linda & Arning, Katrin & Ziefle, Martina & Walther, Grit, 2024. "An integrated bi-objective optimization model accounting for the social acceptance of renewable fuel production networks," European Journal of Operational Research, Elsevier, vol. 315(1), pages 354-367.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:354-367
    DOI: 10.1016/j.ejor.2023.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Vinay Gonela & Dalila Salazar & Jun Zhang & Atif Osmani & Iddrisu Awudu & Barbara Altman, 2019. "Designing a sustainable stochastic electricity generation network with hybrid production strategies," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2304-2326, April.
    3. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    4. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    5. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    6. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    7. Reusswig, Fritz & Braun, Florian & Heger, Ines & Ludewig, Thomas & Eichenauer, Eva & Lass, Wiebke, 2016. "Against the wind: Local opposition to the German Energiewende," Utilities Policy, Elsevier, vol. 41(C), pages 214-227.
    8. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    9. Mohammad Fattahi, 2020. "A data-driven approach for supply chain network design under uncertainty with consideration of social concerns," Annals of Operations Research, Springer, vol. 288(1), pages 265-284, May.
    10. Christos Vlachokostas & Charisios Achillas & Ioannis Agnantiaris & Alexandra V. Michailidou & Christos Pallas & Eleni Feleki & Nicolas Moussiopoulos, 2020. "Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy," Energies, MDPI, vol. 13(9), pages 1-14, May.
    11. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Lee, Gi-Eu & Loveridge, Scott & Joshi, Satish, 2017. "Local acceptance and heterogeneous externalities of biorefineries," Energy Economics, Elsevier, vol. 67(C), pages 328-336.
    14. Kyle D. Chen & Warren H. Hausman, 2000. "Technical Note: Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis," Management Science, INFORMS, vol. 46(2), pages 327-332, February.
    15. Zhanguo Zhu & Feng Chu & Alexandre Dolgui & Chengbin Chu & Wei Zhou & Selwyn Piramuthu, 2018. "Recent advances and opportunities in sustainable food supply chain: a model-oriented review," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5700-5722, September.
    16. Paul E. Green & Abba M. Krieger, 1985. "Models and Heuristics for Product Line Selection," Marketing Science, INFORMS, vol. 4(1), pages 1-19.
    17. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    18. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    19. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    20. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    21. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    22. Offermann-van Heek, Julia & Arning, Katrin & Sternberg, André & Bardow, André & Ziefle, Martina, 2020. "Assessing public acceptance of the life cycle of CO2-based fuels: Does information make the difference?," Energy Policy, Elsevier, vol. 143(C).
    23. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    24. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, January.
    25. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    26. Zaunbrecher, Barbara S. & Linzenich, Anika & Ziefle, Martina, 2017. "A mast is a mast is a mast…? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis," Energy Policy, Elsevier, vol. 105(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    2. Tautenhain, Camila P.S. & Barbosa-Povoa, Ana Paula & Mota, Bruna & Nascimento, Mariá C.V., 2021. "An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 70-90.
    3. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    4. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    5. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    6. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    7. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    8. Mariana Toussaint & Pablo Cabanelas & Alicia Blanco‐González, 2021. "Social sustainability in the food value chain: An integrative approach beyond corporate social responsibility," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 103-115, January.
    9. Stanislav Martinát & Justyna Chodkowska-Miszczuk & Marián Kulla & Josef Navrátil & Petr Klusáček & Petr Dvořák & Ladislav Novotný & Tomáš Krejčí & Loránt Pregi & Jakub Trojan & Bohumil Frantál, 2022. "Best Practice Forever? Dynamics behind the Perception of Farm-Fed Anaerobic Digestion Plants in Rural Peripheries," Energies, MDPI, vol. 15(7), pages 1-17, March.
    10. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    11. Agnieszka Rochmińska, 2023. "Wind Energy Infrastructure and Socio-Spatial Conflicts," Energies, MDPI, vol. 16(3), pages 1-19, January.
    12. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    13. Schneider, Nina & Rinscheid, Adrian, 2024. "The (de-)construction of technology legitimacy: Contending storylines surrounding wind energy in Austria and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    15. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    16. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
    17. D. G. Mogale & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Green food supply chain design considering risk and post-harvest losses: a case study," Annals of Operations Research, Springer, vol. 295(1), pages 257-284, December.
    18. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    19. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    20. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:354-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.