IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p1129-1139.html
   My bibliography  Save this article

On solving robust log-optimal portfolio: A supporting hyperplane approximation approach

Author

Listed:
  • Hsieh, Chung-Han

Abstract

A log-optimal portfolio is any portfolio that maximizes the expected logarithmic growth (ELG) of an investor’s wealth, which typically assumes prior knowledge of the true return distribution. However, in practice, return distributions are often ambiguous; i.e., the true distribution is unknown, making this problem challenging to solve. This paper proposes a supporting hyperplane approximation approach, reformulating a class of distributional robust log-optimal portfolio problems with polyhedron ambiguity sets into tractable robust linear programs. An efficient algorithm is presented to determine the optimal number of hyperplanes. Additionally, to adapt to the constantly changing market, we propose an online trading algorithm using a sliding window approach to solve a sequence of robust linear programs, offering significant computational advantages. The effectiveness of the proposed approach is supported by empirical studies using historical stock price data.

Suggested Citation

  • Hsieh, Chung-Han, 2024. "On solving robust log-optimal portfolio: A supporting hyperplane approximation approach," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1129-1139.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1129-1139
    DOI: 10.1016/j.ejor.2023.09.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.09.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi-Lin Li & Chung-Han Hsieh, 2023. "On Unified Adaptive Portfolio Management," Papers 2307.03391, arXiv.org, revised Apr 2024.
    2. Henry Allen Latane, 1959. "Criteria for Choice Among Risky Ventures," Journal of Political Economy, University of Chicago Press, vol. 67(2), pages 144-144.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    5. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    6. Gabriel Frahm, 2020. "Statistical properties of estimators for the log-optimal portfolio," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 1-32, August.
    7. Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2022. "On the utility maximization of the discrepancy between a perceived and market implied risk neutral distribution," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1215-1229.
    8. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    9. Bart P. G. Van Parys & Peyman Mohajerin Esfahani & Daniel Kuhn, 2021. "From Data to Decisions: Distributionally Robust Optimization Is Optimal," Management Science, INFORMS, vol. 67(6), pages 3387-3402, June.
    10. Jonathan Yu-Meng Li, 2023. "Wasserstein-Kelly Portfolios: A Robust Data-Driven Solution to Optimize Portfolio Growth," Papers 2302.13979, arXiv.org.
    11. Andrew W. Lo & H. Allen Orr & Ruixun Zhang, 2018. "The growth of relative wealth and the Kelly criterion," Journal of Bioeconomics, Springer, vol. 20(1), pages 49-67, April.
    12. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    13. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    14. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    15. Pei-Ting Wang & Chung-Han Hsieh, 2022. "On Data-Driven Log-Optimal Portfolio: A Sliding Window Approach," Papers 2206.12148, arXiv.org.
    16. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    17. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    18. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    19. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    20. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    21. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    22. Stephen Boyd & Enzo Busseti & Steven Diamond & Ronald N. Kahn & Kwangmoo Koh & Peter Nystrup & Jan Speth, 2017. "Multi-Period Trading via Convex Optimization," Papers 1705.00109, arXiv.org.
    23. Feifeng Zheng & Zhaojie Wang & E. Zhang & Ming Liu, 2022. "Distributionally Robust Joint Chance Constrained Vessel Fleet Deployment Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 39(06), pages 1-19, December.
    24. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Han Hsieh & Jie-Ling Lu, 2024. "On Accelerating Large-Scale Robust Portfolio Optimization," Papers 2408.07879, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Chung-Han Hsieh, 2022. "On Solving Robust Log-Optimal Portfolio: A Supporting Hyperplane Approximation Approach," Papers 2202.03858, arXiv.org.
    3. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    5. Wang, Jianshen & Taylor, Nick, 2018. "A comparison of static and dynamic portfolio policies," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 111-127.
    6. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    7. Chung-Han Hsieh & Jie-Ling Lu, 2024. "On Accelerating Large-Scale Robust Portfolio Optimization," Papers 2408.07879, arXiv.org.
    8. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    9. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    11. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    12. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    13. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    14. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    15. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    16. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    17. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    18. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    19. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    20. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1129-1139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.