IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i1p387-399.html
   My bibliography  Save this article

Daily scheduling of generating units with natural-gas market constraints

Author

Listed:
  • Constante-Flores, Gonzalo E.
  • Conejo, Antonio J.
  • Qiu, Feng

Abstract

We address the daily scheduling of generating units (unit commitment) in a system whose production mix includes a large number of natural-gas-fired units. We assume that the natural-gas system, operating under market conditions, does its best to supply the natural-gas for electricity production required by the power system. We formulate this problem as a bi-level model whose upper-level problem represents the scheduling of generating units under a second-order conic relaxation of the AC network constraints, and whose lower-level one represents the clearing of the natural-gas market. The upper-level problem is mixed-integer second-order conic, while the lower-level one is second-order conic as well, but continuous. We replace the lower-level problem by its optimality conditions in the form of primal constraints, dual constraints, and strong duality equality, which results in a single-level nonconvex mixed-integer nonlinear optimization problem. To improve the computational tractability of such formulation, we derive a mixed-integer second-order conic relaxation of the single-level nonconvex mixed-integer nonlinear optimization problem. Such problem is solved using a Benders-type outer-approximation decomposition framework with a master mixed-integer linear problem and two subproblems that are nonlinear but convex. The communication between the master problem and the subproblems is enhanced by incorporating into the master problem linearized information pertaining to the subproblems and valid linear inequalities. The benefits of the proposed model and the effectiveness of the solution procedure are illustrated using the IEEE 24-bus test system coupled with a 20-node natural-gas system and the Central Illinois 200-bus power system coupled with a 48-node natural-gas system.

Suggested Citation

  • Constante-Flores, Gonzalo E. & Conejo, Antonio J. & Qiu, Feng, 2024. "Daily scheduling of generating units with natural-gas market constraints," European Journal of Operational Research, Elsevier, vol. 313(1), pages 387-399.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:387-399
    DOI: 10.1016/j.ejor.2023.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    3. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    4. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    5. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    6. Timo Lohmann & Michael R. Bussieck & Lutz Westermann & Steffen Rebennack, 2021. "High-Performance Prototyping of Decomposition Methods in GAMS," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 34-50, January.
    7. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. López-Ramos, Francisco & Nasini, Stefano & Sayed, Mohamed H., 2020. "An integrated planning model in centralized power systems," European Journal of Operational Research, Elsevier, vol. 287(1), pages 361-377.
    9. Georgios Papazoglou & Pandelis Biskas, 2023. "Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem," Energies, MDPI, vol. 16(3), pages 1-25, January.
    10. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    11. Zhao, Xian & Sun, Jinglei & Qiu, Qingan & Chen, Ke, 2021. "Optimal inspection and mission abort policies for systems subject to degradation," European Journal of Operational Research, Elsevier, vol. 292(2), pages 610-621.
    12. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    13. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    14. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    15. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    16. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    17. Pranjal Pragya Verma & Mohammad Reza Hesamzadeh & Steffen Rebennack & Derek Bunn & K. Shanti Swarup & Dipti Srinivasan, 2024. "Optimal investment by large consumers in an electricity market with generator market power," Computational Management Science, Springer, vol. 21(1), pages 1-56, June.
    18. Zhongyang Zhao & Caisheng Wang & Masoud H. Nazari, 2024. "Revenue Analysis of Stationary and Transportable Battery Storage for Power Systems: A Market Participant Perspective," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    19. Nouha Dkhili & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Resilient Predictive Control Coupled with a Worst-Case Scenario Approach for a Distributed-Generation-Rich Power Distribution Grid," Clean Technol., MDPI, vol. 3(3), pages 1-27, August.
    20. Tianyu Cui & Francesco Caravelli & Cozmin Ududec, 2017. "Correlations and Clustering in Wholesale Electricity Markets," Papers 1710.11184, arXiv.org, revised Nov 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:387-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.