IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p857-876.html
   My bibliography  Save this article

Multi-Commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical study

Author

Listed:
  • Chang, Kuo-Hao
  • Hsiung, Tzu-Yi
  • Chang, Tzu-Yin

Abstract

When earthquakes and other natural disasters occur, a surge in demand for life-supporting commodities can occur alongside transportation network disruption. Slow and ineffective delivery of water, food, medical supplies, and survival equipment can lead to high levels of anxiety in the population, mistrust for the government, and potentially social conflict and increased casualties. Thus, the issue of how to effectively and efficiently distribute essential commodities in the highly stochastic post-disaster response phase is extremely critical. In this research, we create a network flow model which allows the transportation of goods not only from distribution center to relief centers, but also among the relief centers. This structure allows local relief centers to support each other, which we show leads to much greater efficiency of commodity distribution to meet the demands of each relief center in the face of uncertain transportation network flow. We collaborate with the National Science and Technology Center for Disaster Reduction (NCDR) in Taiwan to model and simulate the relationship between earthquake attributes (e.g., magnitude, time of strike) and the resulting status of the transportation network and speed of vehicle traffic. By applying simulation optimization techniques to solve the split delivery multiple destination inventory routing problem, we are able to obtain the best vehicle and inventory routing decision under varying disaster scenarios. The resulting actionable insights can alleviate civil unrest and anxiety as well as save lives after a major earthquake.

Suggested Citation

  • Chang, Kuo-Hao & Hsiung, Tzu-Yi & Chang, Tzu-Yin, 2022. "Multi-Commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical study," European Journal of Operational Research, Elsevier, vol. 303(2), pages 857-876.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:857-876
    DOI: 10.1016/j.ejor.2022.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172200176X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Chun-Liang Lee & Chung-Yuan Huang & Tzu-Chien Hsiao & Chun-Yen Wu & Yaw-Chung Chen & I.-Cheng Wang, 2014. "Impact of Vehicular Networks on Emergency Medical Services in Urban Areas," IJERPH, MDPI, vol. 11(11), pages 1-23, October.
    3. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    4. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    5. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Hu, Shaolong & Dong, Zhijie Sasha, 2019. "Supplier selection and pre-positioning strategy in humanitarian relief," Omega, Elsevier, vol. 83(C), pages 287-298.
    7. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    8. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    9. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    10. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    11. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    12. Lili Du & Srinivas Peeta, 2014. "A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions," Networks and Spatial Economics, Springer, vol. 14(2), pages 271-295, June.
    13. Kenny, Charles, 2009. "Why do people die in earthquakes ? the costs, benefits and institutions of disaster risk reduction in developing countries," Policy Research Working Paper Series 4823, The World Bank.
    14. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    15. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    2. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    3. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    2. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    4. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2020. "Planning the delivery of relief supplies upon the occurrence of a natural disaster while considering the assembly process of the relief kits," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    6. Fatemeh Faghih-Mohammadi & Mohammad Mahdi Nasiri & Dinçer Konur, 2023. "Cross-dock facility for disaster relief operations," Annals of Operations Research, Springer, vol. 322(1), pages 497-538, March.
    7. Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    8. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    9. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    10. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    11. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    12. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2021. "Pareto-based grouping meta-heuristic algorithm for humanitarian relief logistics with multistate network reliability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 327-365, June.
    13. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2019. "Humanitarian relief supplies distribution: an application of inventory routing problem," Annals of Operations Research, Springer, vol. 283(1), pages 119-141, December.
    14. Hu, Shaolong & Dong, Zhijie Sasha & Lev, Benjamin, 2022. "Supplier selection in disaster operations management: Review and research gap identification," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    15. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    16. Tarhan, İstenç & Zografos, Konstantinos G. & Sutanto, Juliana & Kheiri, Ahmed, 2024. "A quadrant shrinking heuristic for solving the dynamic multi-objective disaster response personnel routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 776-791.
    17. Groß, Patrick-Oliver & Ehmke, Jan Fabian & Mattfeld, Dirk Christian, 2020. "Interval travel times for robust synchronization in city logistics vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    18. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.
    20. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:857-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.