IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i3p931-944.html
   My bibliography  Save this article

Tight tail probability bounds for distribution-free decision making

Author

Listed:
  • Roos, Ernst
  • Brekelmans, Ruud
  • van Eekelen, Wouter
  • den Hertog, Dick
  • van Leeuwaarden, Johan S.H.

Abstract

Chebyshev’s inequality provides an upper bound on the tail probability of a random variable based on its mean and variance. While tight, the inequality has been criticized for only being attained by pathological distributions that abuse the unboundedness of the underlying support and are not considered realistic in many applications. We provide alternative tight lower and upper bounds on the tail probability given a bounded support, mean and mean absolute deviation of the random variable. We obtain these bounds as exact solutions to semi-infinite linear programs. We apply the bounds for distribution-free analysis of the newsvendor model, stop-loss reinsurance and a problem from radiotherapy optimization with an ambiguous chance constraint.

Suggested Citation

  • Roos, Ernst & Brekelmans, Ruud & van Eekelen, Wouter & den Hertog, Dick & van Leeuwaarden, Johan S.H., 2022. "Tight tail probability bounds for distribution-free decision making," European Journal of Operational Research, Elsevier, vol. 299(3), pages 931-944.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:931-944
    DOI: 10.1016/j.ejor.2021.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heijnen, B., 1990. "Best upper and lower bounds on modified stop loss premiums in case of known range, mode, mean and variance of the original risk," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 207-220, September.
    2. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, June.
    3. Jansen, K. & Haezendonck, J. & Goovaerts, M. J., 1986. "Upper bounds on stop-loss premiums in case of known moments up to the fourth order," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 315-334, October.
    4. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    5. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    6. Aharon Ben-Tal & Eithan Hochman, 1976. "Stochastic Programs with Incomplete Information," Operations Research, INFORMS, vol. 24(2), pages 336-347, April.
    7. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    8. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2018. "Chebyshev Inequalities for Products of Random Variables," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 887-918, August.
    9. Jinfeng Yue & Bintong Chen & Min-Chiang Wang, 2006. "Expected Value of Distribution Information for the Newsvendor Problem," Operations Research, INFORMS, vol. 54(6), pages 1128-1136, December.
    10. De Vylder, F. & Goovaerts, M. J., 1982. "Analytical best upper bounds on stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 1(3), pages 163-175, July.
    11. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    12. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    13. Sungyong Choi & Andrzej Ruszczyński & Yao Zhao, 2011. "A Multiproduct Risk-Averse Newsvendor with Law-Invariant Coherent Measures of Risk," Operations Research, INFORMS, vol. 59(2), pages 346-364, April.
    14. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    15. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    2. Rongchuan He & Ye Lu, 2021. "A Robust Price‐Setting Newsvendor Problem," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 276-292, January.
    3. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    4. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    5. Wouter van Eekelen & Dick den Hertog & Johan S.H. van Leeuwaarden, 2022. "MAD Dispersion Measure Makes Extremal Queue Analysis Simple," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1681-1692, May.
    6. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    7. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    8. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    9. Bai, Qingguo & Xu, Jianteng & Gong, Yeming & Chauhan, Satyaveer S., 2022. "Robust decisions for regulated sustainable manufacturing with partial demand information: Mandatory emission capacity versus emission tax," European Journal of Operational Research, Elsevier, vol. 298(3), pages 874-893.
    10. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    11. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    12. Kim, Yun Geon & Chung, Byung Do, 2024. "Data-driven Wasserstein distributionally robust dual-sourcing inventory model under uncertain demand," Omega, Elsevier, vol. 127(C).
    13. Rahimian, Hamed & Bayraksan, Güzin & Homem-de-Mello, Tito, 2019. "Controlling risk and demand ambiguity in newsvendor models," European Journal of Operational Research, Elsevier, vol. 279(3), pages 854-868.
    14. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    15. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    16. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    17. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    18. Andersson, Jonas & Jörnsten, Kurt & Nonås, Sigrid Lise & Sandal, Leif & Ubøe, Jan, 2013. "A maximum entropy approach to the newsvendor problem with partial information," European Journal of Operational Research, Elsevier, vol. 228(1), pages 190-200.
    19. Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.
    20. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:931-944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.