IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v127y2024ics0305048324000781.html
   My bibliography  Save this article

Data-driven Wasserstein distributionally robust dual-sourcing inventory model under uncertain demand

Author

Listed:
  • Kim, Yun Geon
  • Chung, Byung Do

Abstract

Dual-sourcing inventory management, which is aimed at replenishing inventory through two supply sources, has been extensively incorporated across various industries as it can mitigate supply chain related operational risks. Given the practical relevance of this framework, many dual-sourcing inventory models based on stochastic and robust optimization approaches have been developed. However, these approaches encounter challenges such as the curse of dimensionality or solution conservativeness. In this study, we developed a data-driven distributionally robust optimization model for dual-sourcing inventory management under uncertain demand conditions, in which partial information regarding the distribution of the uncertain demand is available. A tractable model was constructed to solve the problem, and an optimal solution was derived in a closed-form expression. Numerical experiments were conducted to evaluate the performance of the proposed model in comparison with benchmark models in terms of the order-, stock-, and rolling-horizon-related parameters and demand distributions. The results demonstrated the benefit of adopting the dual-sourcing strategy in inventory management based on the distributionally robust optimization approach. In addition, the proposed model outperformed the benchmark models in terms of mitigating the bullwhip effect.

Suggested Citation

  • Kim, Yun Geon & Chung, Byung Do, 2024. "Data-driven Wasserstein distributionally robust dual-sourcing inventory model under uncertain demand," Omega, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000781
    DOI: 10.1016/j.omega.2024.103112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324000781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.