IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v281y2020i2p475-482.html
   My bibliography  Save this article

On the integer programming formulation for the relaxed restricted container relocation problem

Author

Listed:
  • Jin, Bo

Abstract

In a recent paper entitled “A new binary formulation of the restricted container relocation problem based on a binary encoding of configurations”, Galle, Barnhart and Jaillet (2018) introduced a new variant of the container relocation problem (CRP), named the relaxed restricted CRP, where every container can be relocated at most once for retrieving each target container. The authors also proposed a binary integer programming model for formulating the relaxed restricted CRP. In this paper, it is first shown that the proposed model contains two deficiencies in formulating the “last in, first out” (LIFO) policy. These deficiencies will cause the solutions obtained by the model to correspond to infeasible configurations or infeasible relocation sequences. Then, the LIFO policy is analyzed in detail and reformulated as linear constraints correctly. Lastly, the corrected integer programming formulation is presented. Computational experiments show that the corrected model dramatically reduces complexity and improves performance.

Suggested Citation

  • Jin, Bo, 2020. "On the integer programming formulation for the relaxed restricted container relocation problem," European Journal of Operational Research, Elsevier, vol. 281(2), pages 475-482.
  • Handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:475-482
    DOI: 10.1016/j.ejor.2019.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719307118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petering, Matthew E.H. & Hussein, Mazen I., 2013. "A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 120-130.
    2. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    3. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    2. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boschma, René & Mes, Martijn R.K. & de Vries, Leon R., 2023. "Approximate dynamic programming for container stacking," European Journal of Operational Research, Elsevier, vol. 310(1), pages 328-342.
    2. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    3. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    4. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    5. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    6. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    7. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    8. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    9. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    10. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    11. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    12. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.
    13. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    14. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    15. Juan P. Cavada & Cristián E. Cortés & Pablo A. Rey, 2023. "Comparing allocation and relocation policies at a logistics service container terminal: a discrete-event simulation approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1281-1316, December.
    16. Bacci, Tiziano & Mattia, Sara & Ventura, Paolo, 2020. "A branch-and-cut algorithm for the restricted Block Relocation Problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 452-459.
    17. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    18. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    19. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    20. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:281:y:2020:i:2:p:475-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.