IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i1p164-178.html
   My bibliography  Save this article

Exact solution of the soft-clustered vehicle-routing problem

Author

Listed:
  • Hintsch, Timo
  • Irnich, Stefan

Abstract

The soft-clustered vehicle-routing problem (SoftCluVRP) extends the classical capacitated vehicle-routing problem by one additional constraint: The customers are partitioned into clusters and feasible routes must respect the soft-cluster constraint, that is, all customers of the same cluster must be served by the same vehicle. In this article, we design and analyze different branch-and-price algorithms for the exact solution of the SoftCluVRP. The algorithms differ in the way the column-generation subproblem, a variant of the shortest-path problem with resource constraints (SPPRC), is solved. The standard approach for SPPRCs is based on dynamic-programming labeling algorithms. We show that even with all the recent acceleration techniques (e.g., partial pricing, bidirectional labeling, decremental state space relaxation) available for SPPRC labeling algorithms, the solution of the subproblem remains extremely difficult. The main contribution is the modeling and solution of the subproblem using a branch-and-cut algorithm. The conducted computational experiments prove that branch-and-price equipped with this integer programming-based approach outperforms sophisticated labeling-based algorithms by one order of magnitude. The largest SoftCluVRP instances solved to optimality have more than 400 customers or more than 50 clusters.

Suggested Citation

  • Hintsch, Timo & Irnich, Stefan, 2020. "Exact solution of the soft-clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 280(1), pages 164-178.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:164-178
    DOI: 10.1016/j.ejor.2019.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719305831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Zhou, Yangming & Qu, Chenhui & Wu, Qinghua & Kou, Yawen & Jiang, Zhibin & Zhou, MengChu, 2024. "A bilevel hybrid iterated search approach to soft-clustered capacitated arc routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    3. Katrin Heßler & Stefan Irnich, 2020. "A Branch-and-Cut Algorithm for the Soft-Clustered Vehicle-Routing Problem," Working Papers 2001, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Ouyang, Zhiyuan & Leung, Eric K.H. & Huang, George Q., 2023. "Community logistics and dynamic community partitioning: A new approach for solving e-commerce last mile delivery," European Journal of Operational Research, Elsevier, vol. 307(1), pages 140-156.
    5. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:164-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.