IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p615-628.html
   My bibliography  Save this article

The Steiner Traveling Salesman Problem and its extensions

Author

Listed:
  • Rodríguez-Pereira, Jessica
  • Fernández, Elena
  • Laporte, Gilbert
  • Benavent, Enrique
  • Martínez-Sykora, Antonio

Abstract

This paper considers the Steiner Traveling Salesman Problem, an extension of the classical Traveling Salesman Problem on an incomplete graph where not all vertices have demand. Some extensions including several depots or location decisions are introduced, modeled and solved. A compact integer linear programming formulation is proposed for each problem, where the routes are represented with two-index decision variables, and parity conditions are modeled using cocircuit inequalities. Exact branch-and-cut algorithms are developed for all formulations. Computational results obtained confirm the good performance of the algorithms. Instances with up to 500 vertices are solved optimally.

Suggested Citation

  • Rodríguez-Pereira, Jessica & Fernández, Elena & Laporte, Gilbert & Benavent, Enrique & Martínez-Sykora, Antonio, 2019. "The Steiner Traveling Salesman Problem and its extensions," European Journal of Operational Research, Elsevier, vol. 278(2), pages 615-628.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:615-628
    DOI: 10.1016/j.ejor.2019.04.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fleischmann, Bernhard, 1985. "A cutting plane procedure for the travelling salesman problem on road networks," European Journal of Operational Research, Elsevier, vol. 21(3), pages 307-317, September.
    2. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2019. "Exact Solution of Several Families of Location-Arc Routing Problems," Transportation Science, INFORMS, vol. 53(5), pages 1313-1333, September.
    3. Corberan, A. & Sanchis, J. M., 1998. "The general routing problem polyhedron: Facets from the RPP and GTSP polyhedra," European Journal of Operational Research, Elsevier, vol. 108(3), pages 538-550, August.
    4. Letchford, Adam N. & Salazar-González, Juan-José, 2015. "Stronger multi-commodity flow formulations of the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 730-738.
    5. Julián Aráoz & Elena Fernández & Carles Franquesa, 2017. "The Generalized Arc Routing Problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 497-525, October.
    6. Letchford, Adam N., 1999. "The general routing polyhedron: A unifying framework," European Journal of Operational Research, Elsevier, vol. 112(1), pages 122-133, January.
    7. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.
    8. William W. Hardgrave & George L. Nemhauser, 1962. "On the Relation Between the Traveling-Salesman and the Longest-Path Problems," Operations Research, INFORMS, vol. 10(5), pages 647-657, October.
    9. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    10. Letchford, Adam N., 1997. "New inequalities for the General Routing Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 317-322, January.
    11. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    2. Neves-Moreira, Fábio & Amorim, Pedro, 2024. "Learning efficient in-store picking strategies to reduce customer encounters in omnichannel retail," International Journal of Production Economics, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Corberán & Gustavo Mejía & José M. Sanchis, 2005. "New Results on the Mixed General Routing Problem," Operations Research, INFORMS, vol. 53(2), pages 363-376, April.
    2. Elena Fernández & Jessica Rodríguez-Pereira, 2017. "Multi-depot rural postman problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 340-372, July.
    3. Elena Fernández & Oscar Meza & Robert Garfinkel & Maruja Ortega, 2003. "On the Undirected Rural Postman Problem: Tight Bounds Based on a New Formulation," Operations Research, INFORMS, vol. 51(2), pages 281-291, April.
    4. Benavent, Enrique & Carrotta, Alessandro & Corberan, Angel & Sanchis, Jose M. & Vigo, Daniele, 2007. "Lower bounds and heuristics for the Windy Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 855-869, January.
    5. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    6. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    7. Xiaoguang Bao & Xinhao Ni, 2024. "Approximation algorithms for two clustered arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-12, July.
    8. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    9. Fischer, Vera & Pacheco Paneque, Meritxell & Legrain, Antoine & Bürgy, Reinhard, 2024. "A capacitated multi-vehicle covering tour problem on a road network and its application to waste collection," European Journal of Operational Research, Elsevier, vol. 315(1), pages 338-353.
    10. Corberán, Ángel & Plana, Isaac & Reula, Miguel & Sanchis, José M., 2021. "On the Distance-Constrained Close Enough Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 32-51.
    11. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    12. Letchford, Adam N., 1999. "The general routing polyhedron: A unifying framework," European Journal of Operational Research, Elsevier, vol. 112(1), pages 122-133, January.
    13. Mostafa Khorramizadeh & Roghayeh Javvi, 2024. "A branch-and-cut algorithm for the windy profitable location rural postman problem," Annals of Operations Research, Springer, vol. 341(2), pages 993-1022, October.
    14. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    15. Fernández, Elena & Roca-Riu, Mireia & Speranza, M. Grazia, 2018. "The Shared Customer Collaboration Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1078-1093.
    16. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    17. Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
    18. Irnich, Stefan & Laganà, Demetrio & Schlebusch, Claudia & Vocaturo, Francesca, 2015. "Two-phase branch-and-cut for the mixed capacitated general routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 17-29.
    19. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    20. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2018. "A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem," Transportation Science, INFORMS, vol. 52(2), pages 353-369, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:615-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.