IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i1p255-265.html
   My bibliography  Save this article

Technical and allocative efficiency in a panel stochastic production frontier system model

Author

Listed:
  • Lai, Hung-pin
  • Kumbhakar, Subal C.

Abstract

In this paper, we consider a state-of-the-art panel stochastic production frontier model and estimate it using a system that includes both technical and allocative inefficiency. The system consists of the optimal input choice rule (the first-order conditions (FOCs)) under cost minimization together with the production function. The FOCs are used to take care of endogeneity of inputs. Allocative inefficiency is modeled as non-fulfillment of the FOCs. We use distributional assumptions on the noise and inefficiency components and estimate the model parameters using the maximum likelihood method. In estimating technical and allocative inefficiency components and costs therefrom we control for fixed firm-effects in each equation of the system. We also correct for the incidental parameter bias by using the half-panel jackknife estimator.

Suggested Citation

  • Lai, Hung-pin & Kumbhakar, Subal C., 2019. "Technical and allocative efficiency in a panel stochastic production frontier system model," European Journal of Operational Research, Elsevier, vol. 278(1), pages 255-265.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:255-265
    DOI: 10.1016/j.ejor.2019.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    2. Laurits R. Christensen & Dale W. Jorgenson, 1970. "U.S. Real Product And Real Factor Input, 1929–1967," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 16(1), pages 19-50, March.
    3. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
    4. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    5. Haelermans, Carla & Ruggiero, John, 2013. "Estimating technical and allocative efficiency in the public sector: A nonparametric analysis of Dutch schools," European Journal of Operational Research, Elsevier, vol. 227(1), pages 174-181.
    6. Kumbhakar, Subal C. & Wang, Hung-Jen, 2006. "Estimation of technical and allocative inefficiency: A primal system approach," Journal of Econometrics, Elsevier, vol. 134(2), pages 419-440, October.
    7. Schmidt, Peter, 1988. "Estimation of a fixed-effect Cobb-Douglas system using panel data," Journal of Econometrics, Elsevier, vol. 37(3), pages 361-380, March.
    8. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    9. Banker, Rajiv D & Maindiratta, Ajay, 1988. "Nonparametric Analysis of Technical and Allocative Efficiencies in Production," Econometrica, Econometric Society, vol. 56(6), pages 1315-1332, November.
    10. Brissimis, Sophocles N. & Delis, Manthos D. & Tsionas, Efthymios G., 2010. "Technical and allocative efficiency in European banking," European Journal of Operational Research, Elsevier, vol. 204(1), pages 153-163, July.
    11. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    12. Athanassopoulos, Antreas & Gounaris, Chrysostomos, 2001. "Assessing the technical and allocative efficiency of hospital operations in Greece and its resource allocation implications," European Journal of Operational Research, Elsevier, vol. 133(2), pages 416-431, January.
    13. Banker, Rajiv D. & Janakiraman, Surya & Natarajan, Ram, 2004. "Analysis of trends in technical and allocative efficiency: An application to Texas public school districts," European Journal of Operational Research, Elsevier, vol. 154(2), pages 477-491, April.
    14. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    15. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    16. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    17. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    18. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    19. Manuel Arellano & Jinyong Hahn, 2016. "A likelihood-Based Approximate Solution to the Incidental Parameter Problem in Dynamic Nonlinear Models with Multiple Effects," Global Economic Review, Taylor & Francis Journals, vol. 45(3), pages 251-274, July.
    20. Kumbhakar, Subal C., 1997. "Modeling allocative inefficiency in a translog cost function and cost share equations: An exact relationship," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 351-356.
    21. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "The Joint Measurement of Technical and Allocative Inefficiencies: An Application of Bayesian Inference in Nonlinear Random-Effects Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 736-747, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musau, Andrew & Kumbhakar, Subal C. & Mydland, Ørjan & Lien, Gudbrand, 2021. "Determinants of allocative and technical inefficiency in stochastic frontier models: An analysis of Norwegian electricity distribution firms," European Journal of Operational Research, Elsevier, vol. 288(3), pages 983-991.
    2. Kumbhakar, Subal C. & Peresetsky, Anatoly & Shchetynin, Yevgenii & Zaytsev, Alexey, 2020. "Technical efficiency and inefficiency: Reassurance of standard SFA models and a misspecification problem," MPRA Paper 102797, University Library of Munich, Germany.
    3. Tsionas, Mike G. & Kumbhakar, Subal C., 2021. "Stochastic frontier models with time-varying conditional variances," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1115-1132.
    4. Subal C. Kumbhakar & Mike G. Tsionas, 2021. "Estimation of costs of technical and allocative inefficiency," Journal of Productivity Analysis, Springer, vol. 55(1), pages 41-46, February.
    5. Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
    6. Paul, Satya & Shankar, Sriram, 2022. "Regulatory reforms and the efficiency and productivity growth in electricity generation in OECD countries," Energy Economics, Elsevier, vol. 108(C).
    7. Liu, Tung, 2021. "Measuring cost inefficiency: A dual approach," Economic Modelling, Elsevier, vol. 99(C).
    8. Delis, Manthos D. & Iosifidi, Maria & Tsionas, Mike, 2020. "Management estimation in banking," European Journal of Operational Research, Elsevier, vol. 284(1), pages 355-372.
    9. Kumbhakar, Subal C. & Tsionas, Mike G., 2020. "On the estimation of technical and allocative efficiency in a panel stochastic production frontier system model: Some new formulations and generalizations," European Journal of Operational Research, Elsevier, vol. 287(2), pages 762-775.
    10. Hongjun Sun & Zuoxiang Zhao & Ding Han, 2024. "Growth Models and Influencing Mechanisms of Total Factor Productivity in China’s National High-Tech Zones," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    11. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tung, 2021. "Measuring cost inefficiency: A dual approach," Economic Modelling, Elsevier, vol. 99(C).
    2. Kumbhakar, Subal C. & Tsionas, Mike G., 2020. "On the estimation of technical and allocative efficiency in a panel stochastic production frontier system model: Some new formulations and generalizations," European Journal of Operational Research, Elsevier, vol. 287(2), pages 762-775.
    3. Tung Liu, 2020. "Measuring Technical, Allocative inefficiency, and Cost Inefficiency by Applying Duality Theory," Working Papers 202001, Ball State University, Department of Economics, revised Jun 2020.
    4. Wang, Hung-Jen, 2006. "Stochastic frontier models," MPRA Paper 31079, University Library of Munich, Germany.
    5. Tsionas, Mike G. & Kumbhakar, Subal C., 2021. "Stochastic frontier models with time-varying conditional variances," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1115-1132.
    6. Atkinson, Scott E. & Dorfman, Jeffrey H., 2006. "Chasing Absolute Cost and Profit Savings in a World of Relative Inefficiency," 2006 Annual meeting, July 23-26, Long Beach, CA 21058, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    8. Brissimis, Sophocles N. & Delis, Manthos D. & Tsionas, Efthymios G., 2010. "Technical and allocative efficiency in European banking," European Journal of Operational Research, Elsevier, vol. 204(1), pages 153-163, July.
    9. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    10. Sanjaya DeSilva, 2000. "Skills, Partnerships and Tenancy in Sri Lankan Rice Farms," Working Papers 819, Economic Growth Center, Yale University.
    11. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    12. Tsionas, Efthymios & Kumbhakar, Subal, 2006. "Estimation of Technical and Allocative Inefficiencies in a Cost System: An Exact Maximum Likelihood Approach," MPRA Paper 20173, University Library of Munich, Germany.
    13. Xiaoheng Zhang & Xiaohua Yu & Xu Tian & Xianhui Geng & Yingheng Zhou, 2019. "Farm size, inefficiency, and rice production cost in China," Journal of Productivity Analysis, Springer, vol. 52(1), pages 57-68, December.
    14. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    15. Desilva, Sanjaya, 2000. "Skills, Partnership and Tenancy in Sri Lanka Rice Farms," Center Discussion Papers 28401, Yale University, Economic Growth Center.
    16. Mamatzakis, Emmanuel & Tsionas, Mike G. & Kumbhakar, Subal C. & Koutsomanoli-Filippaki, Anastasia, 2015. "Does labour regulation affect technical and allocative efficiency? Evidence from the banking industry," Journal of Banking & Finance, Elsevier, vol. 61(S1), pages 84-98.
    17. Kumbhakar, Subal C. & Wang, Hung-Jen, 2006. "Estimation of technical and allocative inefficiency: A primal system approach," Journal of Econometrics, Elsevier, vol. 134(2), pages 419-440, October.
    18. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    19. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    20. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:255-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.