IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i1p282-293.html
   My bibliography  Save this article

Matrix representations of the inverse problem in the graph model for conflict resolution

Author

Listed:
  • Wang, Junjie
  • Hipel, Keith W.
  • Fang, Liping
  • Dang, Yaoguo

Abstract

Given the final individual stability for each decision maker or an equilibrium of interest, a matrix-based method for an inverse analysis is developed in order to calculate all of the possible preferences for each decision maker creating the stability results based on the Nash, general metarationality, symmetric metarationality, or sequential stability definition of possible human interactions in a conflict. The matrix representations are furnished for the relative preferences, unilateral movements and improvements, as well as joint movements and joint improvements for a conflict having two or more decision makers. Theoretical conditions are derived for specifying required preference relationships in an inverse graph model. Under each of the four solution concepts, a matrix relationship is established to obtain all the available preferences for each decision maker causing the specific state to be an equilibrium. To explain how it can be employed in practice, this new approach to inverse analysis is applied to the Elsipogtog First Nation fracking dispute which took place in the Canadian Province of New Brunswick.

Suggested Citation

  • Wang, Junjie & Hipel, Keith W. & Fang, Liping & Dang, Yaoguo, 2018. "Matrix representations of the inverse problem in the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 270(1), pages 282-293.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:1:p:282-293
    DOI: 10.1016/j.ejor.2018.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718302169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Brien, Nicole L. & Hipel, Keith W., 2016. "A strategic analysis of the New Brunswick, Canada fracking controversy," Energy Economics, Elsevier, vol. 55(C), pages 69-78.
    2. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    3. Xu, Haiyan & Marc Kilgour, D. & Hipel, Keith W. & Kemkes, Graeme, 2010. "Using matrices to link conflict evolution and resolution in a graph model," European Journal of Operational Research, Elsevier, vol. 207(1), pages 318-329, November.
    4. Fang, Liping & Hipel, Keith W. & Kilgour, D. Marc, 1989. "Conflict models in graph form: Solution concepts and their interrelationships," European Journal of Operational Research, Elsevier, vol. 41(1), pages 86-100, July.
    5. Steven J. Brams & Donald Wittman, 1981. "Nonmyopic Equilibria in 2×2 Games," Conflict Management and Peace Science, Peace Science Society (International), vol. 6(1), pages 39-62, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shinan & Xu, Haiyan & Hipel, Keith W. & Fang, Liping, 2019. "Mixed stabilities for analyzing opponents’ heterogeneous behavior within the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 277(2), pages 621-632.
    2. Qingye Han & Yuming Zhu & Ginger Y. Ke & Hongli Lin, 2019. "A Two-Stage Decision Framework for Resolving Brownfield Conflicts," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    3. Yu Han & Haiyan Xu & Ginger Y. Ke, 2020. "Construction and application of hyper-inverse conflict models based on the sequential stability," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 237-259, November.
    4. Rêgo, Leandro Chaves & Silva, Hugo Victor & Rodrigues, Carlos Diego, 2021. "Optimizing the cost of preference manipulation in the graph model for conflict resolution," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. He, Shawei, 2022. "A time sensitive graph model for conflict resolution with application to international air carbon negotiation," European Journal of Operational Research, Elsevier, vol. 302(2), pages 652-670.
    6. Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
    7. Yu Han & Haiyan Xu & Liping Fang & Keith W. Hipel, 2022. "An Integer Programming Approach to Solving the Inverse Graph Model for Conflict Resolution with Two Decision Makers," Group Decision and Negotiation, Springer, vol. 31(1), pages 23-48, February.
    8. Wu, Nannan & Xu, Yejun & Kilgour, D. Marc & Fang, Liping, 2023. "The graph model for composite decision makers and its application to a water resource conflict," European Journal of Operational Research, Elsevier, vol. 306(1), pages 308-321.
    9. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    10. Leandro Chaves Rêgo & Giannini Italino Alves Vieira, 2021. "Matrix Representation of Solution Concepts in the Graph Model for Conflict Resolution with Probabilistic Preferences and Multiple Decision Makers," Group Decision and Negotiation, Springer, vol. 30(3), pages 697-717, June.
    11. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fritz W. Scharpf, 1991. "Response to Steven J. Brams and Bruno S. Frey," Rationality and Society, , vol. 3(2), pages 261-265, April.
    2. Leandro Chaves Rêgo & France E. G. Oliveira, 2020. "Higher-order Sequential Stabilities in the Graph Model for Conflict Resolution for Bilateral Conflicts," Group Decision and Negotiation, Springer, vol. 29(4), pages 601-626, August.
    3. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    4. Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
    5. Fritz W. Scharpf, 1991. "Games Real Actors Could Play: The Challenge of Complexity," Journal of Theoretical Politics, , vol. 3(3), pages 277-304, July.
    6. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    7. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    8. Inohara, Takehiro, 2016. "State transition time analysis in the Graph Model for Conflict Resolution," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 372-382.
    9. Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
    10. Takehiro Inohara & Keith W. Hipel, 2008. "Coalition analysis in the graph model for conflict resolution," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 343-359, December.
    11. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    12. Wu, Nannan & Xu, Yejun & Kilgour, D. Marc & Fang, Liping, 2023. "The graph model for composite decision makers and its application to a water resource conflict," European Journal of Operational Research, Elsevier, vol. 306(1), pages 308-321.
    13. He, Shawei, 2022. "A time sensitive graph model for conflict resolution with application to international air carbon negotiation," European Journal of Operational Research, Elsevier, vol. 302(2), pages 652-670.
    14. Haiyan Xu & D. Kilgour & Keith Hipel & Edward McBean, 2014. "Theory and implementation of coalitional analysis in cooperative decision making," Theory and Decision, Springer, vol. 76(2), pages 147-171, February.
    15. Koto, Prosper Senyo & Yiridoe, Emmanuel K., 2019. "Expected willingness to pay for wind energy in Atlantic Canada," Energy Policy, Elsevier, vol. 129(C), pages 80-88.
    16. Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
    17. Martínez-Espiñeira, Roberto & García-Valiñas, María Á. & Matesanz, David, 2019. "Public Attitudes towards Hydraulic Fracturing in Western Newfoundland," Energy Economics, Elsevier, vol. 84(C).
    18. Yu Han & Haiyan Xu & Liping Fang & Keith W. Hipel, 2022. "An Integer Programming Approach to Solving the Inverse Graph Model for Conflict Resolution with Two Decision Makers," Group Decision and Negotiation, Springer, vol. 31(1), pages 23-48, February.
    19. Clyde Holsapple & Hsiangchu Lai & Andrew Whinston, 1997. "Implications of Negotiation Theory for Research and Development of Negotiation Support Systems," Group Decision and Negotiation, Springer, vol. 6(3), pages 255-274, May.
    20. Giannini Italino Alves Vieira & Leandro Chaves Rêgo, 2020. "Berge Solution Concepts in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 29(1), pages 103-125, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:1:p:282-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.