IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v29y2020i1d10.1007_s10726-019-09643-4.html
   My bibliography  Save this article

Evaluating the Stability of the Oil and Gas Exploration and Production Regulatory Framework in Brazil

Author

Listed:
  • Felipe Costa Araujo

    (University of São Paulo)

  • Alexandre Bevilacqua Leoneti

    (University of São Paulo)

Abstract

This paper proposes to use game theory and equilibrium solution concept approaches to model and evaluate the stability of the oil and gas E&P regulatory framework in Brazil. We initially modeled the oil and gas E&P market as a non-cooperative multicriteria game and then applied the solution concepts presented in the GMCR methodology for evaluating the stability of the modeled game. There are indications that the logic behind the modeled game of choosing an adequate regulatory regime for the Brazilian oil and gas E&P market is similar to the classical game of Battle of the Sexes. Following the logic of this game, it is suggested that only in the presence of strong guarantees that the eventual sacrifice of players’ payoffs in the short or medium term will be compensated in the future, the regulatory framework of the oil and gas E&P market in Brazil can be considered stable.

Suggested Citation

  • Felipe Costa Araujo & Alexandre Bevilacqua Leoneti, 2020. "Evaluating the Stability of the Oil and Gas Exploration and Production Regulatory Framework in Brazil," Group Decision and Negotiation, Springer, vol. 29(1), pages 143-156, February.
  • Handle: RePEc:spr:grdene:v:29:y:2020:i:1:d:10.1007_s10726-019-09643-4
    DOI: 10.1007/s10726-019-09643-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-019-09643-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-019-09643-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
    2. Wood, Aaron D. & Mason, Charles F. & Finnoff, David, 2016. "OPEC, the Seven Sisters, and oil market dominance: An evolutionary game theory and agent-based modeling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 66-78.
    3. Keith W. Hipel & D. Marc Kilgour & Rami A. Kinsara, 2014. "Strategic Investigations of Water Conflicts in the Middle East," Group Decision and Negotiation, Springer, vol. 23(3), pages 355-376, May.
    4. Silvana Tordo & Michael Warner & Osmel E. Manzano & Yahya Anouti, 2013. "Local Content in the Oil and Gas Sector," World Bank Publications - Books, The World Bank Group, number 15930.
    5. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    6. K W Li & D M Kilgour & K W Hipel, 2005. "Status quo analysis in the graph model for conflict resolution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 699-707, June.
    7. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.
    8. Fang, Liping & Hipel, Keith W. & Kilgour, D. Marc, 1989. "Conflict models in graph form: Solution concepts and their interrelationships," European Journal of Operational Research, Elsevier, vol. 41(1), pages 86-100, July.
    9. Leoneti, Alexandre Bevilacqua, 2016. "Utility Function for modeling Group Multicriteria Decision Making problems as games," Operations Research Perspectives, Elsevier, vol. 3(C), pages 21-26.
    10. Willigers, Bart J.A. & Hausken, Kjell, 2013. "The strategic interaction between the government and international oil companies in the UK: An example of a country with dwindling hydrocarbon reserves," Energy Policy, Elsevier, vol. 57(C), pages 276-286.
    11. Binmore, Ken, 2007. "Playing for Real: A Text on Game Theory," OUP Catalogue, Oxford University Press, number 9780195300574.
    12. D. Marc Kilgour & Keith W. Hipel, 2005. "Introduction to the Special Issue on the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 14(6), pages 439-440, November.
    13. D. Marc Kilgour & Keith W. Hipel, 2005. "The Graph Model for Conflict Resolution: Past, Present, and Future," Group Decision and Negotiation, Springer, vol. 14(6), pages 441-460, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    2. Cuoghi, Kaio Guilherme & Leoneti, Alexandre Bevilacqua & Passador, João Luiz, 2022. "On the choice of public or private management models in the Brazilian Unified Health System (SUS)," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    3. Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
    4. Saad Balhasan & Mohammed Alnahhal & Shahrul Shawan & Bashir Salah & Waqas Saleem & Mosab I. Tabash, 2022. "Optimization of Exploration and Production Sharing Agreements Using the Maxi-Min and Nash Solutions," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Leoneti, Alexandre Bevilacqua & Gomes, Luiz Flavio Autran Monteiro, 2021. "Modeling multicriteria group decision making as games from enhanced pairwise comparisons," Operations Research Perspectives, Elsevier, vol. 8(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    2. Giannini Italino Alves Vieira & Leandro Chaves Rêgo, 2020. "Berge Solution Concepts in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 29(1), pages 103-125, February.
    3. Yasir M. Aljefri & Liping Fang & Keith W. Hipel & Kaveh Madani, 2019. "Strategic Analyses of the Hydropolitical Conflicts Surrounding the Grand Ethiopian Renaissance Dam," Group Decision and Negotiation, Springer, vol. 28(2), pages 305-340, April.
    4. Alexandre Bevilacqua Leoneti & René Bañares-Alcántara & Eduardo Cleto Pires & Sonia Valle Walter Borges Oliveira, 2022. "A Multi-Criteria and Multi-Agent Framework for supporting complex decision-making processes," Group Decision and Negotiation, Springer, vol. 31(5), pages 1025-1050, October.
    5. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    6. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    7. M. Abul Bashar & Keith W. Hipel & D. Marc Kilgour & Amer Obeidi, 2018. "Interval fuzzy preferences in the graph model for conflict resolution," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 287-315, September.
    8. Peng Xu & Haiyan Xu & Ginger Y. Ke, 2018. "Integrating an Option-Oriented Attitude Analysis into Investigating the Degree of Stabilities in Conflict Resolution," Group Decision and Negotiation, Springer, vol. 27(6), pages 981-1010, December.
    9. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    10. Leandro Chaves Rêgo & France E. G. Oliveira, 2020. "Higher-order Sequential Stabilities in the Graph Model for Conflict Resolution for Bilateral Conflicts," Group Decision and Negotiation, Springer, vol. 29(4), pages 601-626, August.
    11. Pournabi, Nima & Janatrostami, Somaye & Ashrafzadeh, Afshin & Mohammadi, Kourosh, 2021. "Resolution of Internal conflicts for conservation of the Hour Al-Azim wetland using AHP-SWOT and game theory approach," Land Use Policy, Elsevier, vol. 107(C).
    12. Cuoghi, Kaio Guilherme & Leoneti, Alexandre Bevilacqua & Passador, João Luiz, 2022. "On the choice of public or private management models in the Brazilian Unified Health System (SUS)," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    13. A. B. Leoneti & G. A. Prataviera, 2020. "Entropy-Norm space for geometric selection of strict Nash equilibria in n-person games," Papers 2003.09225, arXiv.org.
    14. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    15. Mengjie Yang & Kai Yang & Yue Che & Shiqiang Lu & Fengyun Sun & Ying Chen & Mengting Li, 2021. "Resolving Transboundary Water Conflicts: Dynamic Evolutionary Analysis Using an Improved GMCR Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3321-3338, August.
    16. Xu, Haiyan & Marc Kilgour, D. & Hipel, Keith W. & Kemkes, Graeme, 2010. "Using matrices to link conflict evolution and resolution in a graph model," European Journal of Operational Research, Elsevier, vol. 207(1), pages 318-329, November.
    17. Cuoghi, Kaio Guilherme & Leoneti, Alexandre Bevilacqua, 2019. "A group MCDA method for aiding decision-making of complex problems in public sector: The case of Belo Monte Dam," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    18. Leoneti, A.B. & Prataviera, G.A., 2020. "Entropy-norm space for geometric selection of strict Nash equilibria in n-person games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    19. Haiyan Xu & D. Marc Kilgour & Keith W. Hipel, 2011. "Matrix Representation of Conflict Resolution in Multiple-Decision-Maker Graph Models with Preference Uncertainty," Group Decision and Negotiation, Springer, vol. 20(6), pages 755-779, November.
    20. Leandro Chaves Rêgo & France E. G. Oliveira, 2023. "An Extension of Higher-Order Sequential Stabilities for Multilateral Conflicts and for Coalitional Analysis in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 32(5), pages 1117-1141, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:29:y:2020:i:1:d:10.1007_s10726-019-09643-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.