IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i1p65-80.html
   My bibliography  Save this article

A double-loop hybrid algorithm for the traveling salesman problem with arbitrary neighbourhoods

Author

Listed:
  • Yang, Zhao
  • Xiao, Ming-Qing
  • Ge, Ya-Wei
  • Feng, De-Long
  • Zhang, Lei
  • Song, Hai-Fang
  • Tang, Xi-Lang

Abstract

This paper addresses the traveling salesman problem with arbitrary neighbourhoods, which is an NP-hard problem in combinatorial optimization and is important in operations research and theoretical computer science. Existing methods based on neighbourhood predigestion and discretization are impractical in cases in which the neighbourhoods are arbitrary. In this paper, the neighbourhoods of the traveling salesman problem are generalized to arbitrarily connected regions in planar Euclidean space. A novel approach to solving this problem is proposed, including a boundary-based encoding scheme and a double-loop hybrid algorithm based on particle swarm optimization and genetic algorithm. In the hybrid algorithm, linear descending inertia weight particle swarm optimization is adopted to search continuous visiting positions in the outer loop, and the genetic algorithm is used to optimize the discrete visiting sequence in the inner loop. The boundary-based encoding scheme can reduce the search space significantly without degrading the solution quality, and the hybrid algorithm can find a high-quality solution in a reasonable time. The computational results on both small and large instances demonstrate that the proposed approach can guarantee a high-quality solution in a reasonable time, compared with three other state-of-the-art algorithms: iterative algorithm, branch-and-bound algorithm, and upper and lower bound algorithm. Moreover, the proposed approach works efficiently in a real-world application that cannot be solved by existing algorithms.

Suggested Citation

  • Yang, Zhao & Xiao, Ming-Qing & Ge, Ya-Wei & Feng, De-Long & Zhang, Lei & Song, Hai-Fang & Tang, Xi-Lang, 2018. "A double-loop hybrid algorithm for the traveling salesman problem with arbitrary neighbourhoods," European Journal of Operational Research, Elsevier, vol. 265(1), pages 65-80.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:65-80
    DOI: 10.1016/j.ejor.2017.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    2. Guenov, Marin & Raeside, Robert, 1992. "Zone shapes in class based storage and multicommand order picking when storage/retrieval machines are used," European Journal of Operational Research, Elsevier, vol. 58(1), pages 37-47, April.
    3. Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
    4. Walton Pereira Coutinho & Roberto Quirino do Nascimento & Artur Alves Pessoa & Anand Subramanian, 2016. "A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 752-765, November.
    5. Karapetyan, D. & Gutin, G., 2012. "Efficient local search algorithms for known and new neighborhoods for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 234-251.
    6. Chatterjee, Sangit & Carrera, Cecilia & Lynch, Lucy A., 1996. "Genetic algorithms and traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 93(3), pages 490-510, September.
    7. Behnam Behdani & J. Cole Smith, 2014. "An Integer-Programming-Based Approach to the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 415-432, August.
    8. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    9. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Lin & Xiangfei Zeng & Jianxun Liu & Keqin Li, 2022. "Angular bisector insertion algorithm for solving small-scale symmetric and asymmetric traveling salesman problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 235-252, January.
    2. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    3. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2023. "Results for the close-enough traveling salesman problem with a branch-and-bound algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 369-407, June.
    4. Francesco Carrabs & Carmine Cerrone & Raffaele Cerulli & Bruce Golden, 2020. "An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1030-1048, October.
    5. Di Placido, Andrea & Archetti, Claudia & Cerrone, Carmine & Golden, Bruce, 2023. "The generalized close enough traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 974-991.
    6. Jun Xu & Wei Hu & Wenjuan Gu & Yongguang Yu, 2023. "A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem," Mathematics, MDPI, vol. 11(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    2. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    4. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    5. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2023. "Results for the close-enough traveling salesman problem with a branch-and-bound algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 369-407, June.
    6. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    7. R. Dekker & M. B. M. de Koster & K. J. Roodbergen & H. van Kalleveen, 2004. "Improving Order-Picking Response Time at Ankor's Warehouse," Interfaces, INFORMS, vol. 34(4), pages 303-313, August.
    8. Corberán, Ángel & Plana, Isaac & Reula, Miguel & Sanchis, José M., 2021. "On the Distance-Constrained Close Enough Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 32-51.
    9. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    10. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Francesco Carrabs & Carmine Cerrone & Raffaele Cerulli & Bruce Golden, 2020. "An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1030-1048, October.
    12. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    13. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," European Journal of Operational Research, Elsevier, vol. 274(2), pages 501-515.
    14. Di Placido, Andrea & Archetti, Claudia & Cerrone, Carmine & Golden, Bruce, 2023. "The generalized close enough traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 974-991.
    15. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    17. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    18. Jane, Chin-Chia & Laih, Yih-Wenn, 2005. "A clustering algorithm for item assignment in a synchronized zone order picking system," European Journal of Operational Research, Elsevier, vol. 166(2), pages 489-496, October.
    19. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:1:p:65-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.