IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i1p182-194.html
   My bibliography  Save this article

Enriching demand forecasts with managerial information to improve inventory replenishment decisions: Exploiting judgment and fostering learning

Author

Listed:
  • Rekik, Yacine
  • Glock, Christoph H.
  • Syntetos, Aris A.

Abstract

This paper is concerned with analysing and modelling the effects of judgmental adjustments to replenishment order quantities. Judgmentally adjusting replenishment quantities suggested by specialized (statistical) software packages is the norm in industry. Yet, to date, no studies have attempted to either analytically model this situation or practically characterize its implications in terms of ‘learning’. We consider a newsvendor setting where information available to managers is reflected in the form of a signal that may or may not be correct, and which may or may not be trusted. We show the analytical equivalence of adjusting an order quantity and deriving an entirely new one in light of a necessary update of the estimated demand distribution. Further, we assess the system’s behaviour through a simulation experiment on theoretically generated data and we study how to foster learning to efficiently utilize managerial information. Judgmental adjustments are found to be beneficial even when the probability of a correct signal is not known. More generally, some interesting insights emerge into the practice of judgmentally adjusting order quantities.

Suggested Citation

  • Rekik, Yacine & Glock, Christoph H. & Syntetos, Aris A., 2017. "Enriching demand forecasts with managerial information to improve inventory replenishment decisions: Exploiting judgment and fostering learning," European Journal of Operational Research, Elsevier, vol. 261(1), pages 182-194.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:1:p:182-194
    DOI: 10.1016/j.ejor.2017.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717301066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katsagounos, Ilias & Thomakos, Dimitrios D. & Litsiou, Konstantia & Nikolopoulos, Konstantinos, 2021. "Superforecasting reality check: Evidence from a small pool of experts and expedited identification," European Journal of Operational Research, Elsevier, vol. 289(1), pages 107-117.
    2. Boutselis, Petros & McNaught, Ken, 2019. "Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context," International Journal of Production Economics, Elsevier, vol. 209(C), pages 325-333.
    3. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    4. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    5. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2021. "Remanufacturing configuration in complex supply chains," Omega, Elsevier, vol. 101(C).
    6. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:1:p:182-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.