IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i2p498-505.html
   My bibliography  Save this article

Models and forecasts of credit card balance

Author

Listed:
  • Hon, Pak Shun
  • Bellotti, Tony

Abstract

Credit card balance is an important factor in retail finance. In this article we consider multivariate models of credit card balance and use a real dataset of credit card data to test the forecasting performance of the models. Several models are considered in a cross-sectional regression context: ordinary least squares, two-stage and mixture regression. After that, we take advantage of the time series structure of the data and model credit card balance using a random effects panel model. The most important predictor variable is previous lagged balance, but other application and behavioural variables are also found to be important. Finally, we present an investigation of forecast accuracy on credit card balance 12 months ahead using each of the proposed models. The panel model is found to be the best model for forecasting credit card balance in terms of mean absolute error (MAE) and the two-stage regression model performs best in terms of root mean squared error (RMSE).

Suggested Citation

  • Hon, Pak Shun & Bellotti, Tony, 2016. "Models and forecasts of credit card balance," European Journal of Operational Research, Elsevier, vol. 249(2), pages 498-505.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:498-505
    DOI: 10.1016/j.ejor.2014.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714010157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P Ma & J Crook & J Ansell, 2010. "Modelling take-up and profitability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 430-442, March.
    2. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    3. Gabriel Jimenez & Jose A. Lopez & Jesus Saurina, 2009. "EAD calibration for corporate credit lines," Working Paper Series 2009-02, Federal Reserve Bank of San Francisco.
    4. Jonathan Crook & Tony Bellotti, 2010. "Time varying and dynamic models for default risk in consumer loans," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 283-305, April.
    5. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    6. Bellotti, Tony & Crook, Jonathan, 2012. "Loss given default models incorporating macroeconomic variables for credit cards," International Journal of Forecasting, Elsevier, vol. 28(1), pages 171-182.
    7. Peter Kennedy, 2003. "A Guide to Econometrics, 5th Edition," MIT Press Books, The MIT Press, edition 5, volume 1, number 026261183x, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Gulsun Akin & Ahmet Faruk Aysan & Sezgim Dasdogen & Levent Yildiran, 2019. "Credit Card Debt: Nescience or Necessity?," Working Papers 1315, Economic Research Forum, revised 21 Aug 2019.
    2. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    3. Shan Luo & Anthony Murphy, 2020. "Understanding the Exposure at Default Risk of Commercial Real Estate Construction and Land Development Loans," Working Papers 2007, Federal Reserve Bank of Dallas.
    4. Gürtler, Marc & Hibbeln, Martin Thomas & Usselmann, Piet, 2018. "Exposure at default modeling – A theoretical and empirical assessment of estimation approaches and parameter choice," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 176-188.
    5. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "A mixture model for credit card exposure at default using the GAMLSS framework," International Journal of Forecasting, Elsevier, vol. 39(1), pages 503-518.
    6. Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
    7. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    2. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    3. Leow, Mindy & Crook, Jonathan, 2014. "Intensity models and transition probabilities for credit card loan delinquencies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 685-694.
    4. Chrysovalantis Gaganis & Panagiota Papadimitri & Fotios Pasiouras & Menelaos Tasiou, 2023. "Social traits and credit card default: a two-stage prediction framework," Annals of Operations Research, Springer, vol. 325(2), pages 1231-1253, June.
    5. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    6. Kim, Hyeongjun & Cho, Hoon & Ryu, Doojin, 2018. "An empirical study on credit card loan delinquency," Economic Systems, Elsevier, vol. 42(3), pages 437-449.
    7. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    8. Sanchez-Barrios, Luis Javier & Andreeva, Galina & Ansell, Jake, 2016. "“Time-to-profit scorecards for revolving credit”," European Journal of Operational Research, Elsevier, vol. 249(2), pages 397-406.
    9. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    10. Jinsuk Yang & Qing Hao & Mahmut Yaşar, 2023. "Institutional investors and cross‐border mergers and acquisitions: The 2000–2018 period," International Review of Finance, International Review of Finance Ltd., vol. 23(3), pages 553-583, September.
    11. Styan, Jacob & Boerngen, Maria A. & Barrowclough, Michael J., 2021. "Factors Influencing Increased Usage of Cash Rent Leases in Illinois," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2021.
    12. Jason Barabas, 1998. "Wage Erosion, Economic Assessments, and Social Welfare Opinions," JCPR Working Papers 56, Northwestern University/University of Chicago Joint Center for Poverty Research.
    13. Berna Karali & Scott H. Irwin & Olga Isengildina‐Massa, 2020. "Supply Fundamentals and Grain Futures Price Movements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 548-568, March.
    14. Carlberg, Jared G., 2002. "Effects Of Ownership Restrictions On Farmland Values In Saskatchewan," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 34(2), pages 1-10, August.
    15. Liuan Wang & Lu (Lucy) Yan & Tongxin Zhou & Xitong Guo & Gregory R. Heim, 2020. "Understanding Physicians’ Online-Offline Behavior Dynamics: An Empirical Study," Information Systems Research, INFORMS, vol. 31(2), pages 537-555, June.
    16. Rodríguez, Elsa Mirta M. & Lacaze, María Victoria & Lupín, Beatriz, 2007. "Willingness to pay for organic food in Argentina: evidence from a consumer survey," Nülan. Deposited Documents 1300, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    17. Liv Osland & Inge Thorsen, 2013. "Spatial Impacts, Local Labour Market Characteristics and Housing Prices," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2063-2083, August.
    18. Gourieroux, Christian & Lu, Yang, 2019. "Least impulse response estimator for stress test exercises," Journal of Banking & Finance, Elsevier, vol. 103(C), pages 62-77.
    19. Subramanian Rangan & Metin Sengul, 2009. "Information technology and transnational integration: Theory and evidence on the evolution of the modern multinational enterprise," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 40(9), pages 1496-1514, December.
    20. Senderski, Marcin, 2011. "Justifiable thrift or feverish animal spirits: What stirred the corporate credit crunch in Poland?," MPRA Paper 56613, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:498-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.