IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i2p463-469.html
   My bibliography  Save this article

Impact of liquidity risk on variations in efficiency and productivity: A panel gamma simulated maximum likelihood estimation

Author

Listed:
  • Shaik, Saleem

Abstract

The objective of this study is to assess the importance of short- and long-run liquidity or debt risk on technical inefficiency and productivity. An alternative panel estimator of normal-gamma stochastic frontier model is proposed using a simulated maximum likelihood estimation technique. Empirical estimates indicate a difference in the parameter coefficients of gamma stochastic production function, and heterogeneity function variables between the pooled and the Swamy–Arora panel models. The results from this study show short and long run risk or variations in liquidity or debt-servicing ratio play an important role in explaining the variance in efficiency and productivity.

Suggested Citation

  • Shaik, Saleem, 2015. "Impact of liquidity risk on variations in efficiency and productivity: A panel gamma simulated maximum likelihood estimation," European Journal of Operational Research, Elsevier, vol. 245(2), pages 463-469.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:2:p:463-469
    DOI: 10.1016/j.ejor.2015.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshirian, Fariborz, 2011. "The global financial crisis and the evolution of markets, institutions and regulation," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 502-511, March.
    2. Catherine J. Morrison Paul & Warren E. Johnston & Gerald A. G. Frengley, 2000. "Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 325-337, May.
    3. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    4. Cooper, W.W. & Kingyens, Angela T. & Paradi, Joseph C., 2014. "Two-stage financial risk tolerance assessment using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 233(1), pages 273-280.
    5. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    6. Valladão, Davi M. & Veiga, Álvaro & Veiga, Geraldo, 2014. "A multistage linear stochastic programming model for optimal corporate debt management," European Journal of Operational Research, Elsevier, vol. 237(1), pages 303-311.
    7. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    8. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    9. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    10. Stéphane Blancard & Jean-Philippe Boussemart & Walter Briec & Kristiaan Kerstens, 2006. "Short- and Long-Run Credit Constraints in French Agriculture: A Directional Distance Function Framework Using Expenditure-Constrained Profit Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 351-364.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. Dwyer, Gerald P. & Tkac, Paula, 2009. "The financial crisis of 2008 in fixed-income markets," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1293-1316, December.
    13. Claessens, Stijn & Demirgüç-Kunt, AslI & Moshirian, Fariborz, 2009. "Global financial crisis, risk analysis and risk measurement," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 1949-1952, November.
    14. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    15. Swamy, P A V B & Arora, S S, 1972. "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error Components Regression Models," Econometrica, Econometric Society, vol. 40(2), pages 261-275, March.
    16. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    17. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    18. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    19. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    20. V. Eldon Ball & Frank M. Gollop & Alison Kelly-Hawke & Gregory P. Swinand, 1999. "Patterns of State Productivity Growth in the U.S. Farm Sector: Linking State and Aggregate Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 164-179.
    21. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakouvogui Kekoura & Shaik Saleem & Addey Kwame Asiam, 2020. "Cluster-Adjusted DEA Efficiency in the presence of Heterogeneity: An Application to Banking Sector," Open Economics, De Gruyter, vol. 3(1), pages 50-69, January.
    2. Jin, Man & Zhao, Shunan & Kumbhakar, Subal C., 2019. "Financial constraints and firm productivity: Evidence from Chinese manufacturing," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1139-1156.
    3. Ioannis E. Tsolas, 2021. "Efficiency and Determinants of Capital Structure in the Greek Pharmaceutical, Cosmetic and Detergent Industries," JRFM, MDPI, vol. 14(12), pages 1-13, December.
    4. Liyun Zhu & Alfons Oude Lansink, 2022. "Dynamic sustainable productivity growth of Dutch dairy farming," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.
    5. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    6. Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Luis R. Murillo-Zamorano & Juan Vega-Cervera, "undated". "The Use of Parametric and Non Parametric Frontier Methods to Measure the Productive Efficiency in the Industrial Sector. A Comparative Study," Discussion Papers 00/17, Department of Economics, University of York.
    3. Manlagnit, Maria Chelo V., 2015. "Basel regulations and banks’ efficiency: The case of the Philippines," Journal of Asian Economics, Elsevier, vol. 39(C), pages 72-85.
    4. Williams, Jonathan & Nguyen, Nghia, 2005. "Financial liberalisation, crisis, and restructuring: A comparative study of bank performance and bank governance in South East Asia," Journal of Banking & Finance, Elsevier, vol. 29(8-9), pages 2119-2154, August.
    5. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    6. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    7. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    8. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    9. Hakan Güneş & Dilem Yıldırım, 2016. "Estimating Cost Efficiency of Turkish Commercial Banks under Unobserved Heterogeneity with Stochastic Frontier Models," ERC Working Papers 1603, ERC - Economic Research Center, Middle East Technical University, revised Mar 2016.
    10. Murillo-Zamorano, Luis R. & Vega-Cervera, Juan A., 2001. "The use of parametric and non-parametric frontier methods to measure the productive efficiency in the industrial sector: A comparative study," International Journal of Production Economics, Elsevier, vol. 69(3), pages 265-275, February.
    11. Reddy, Mahendra, 2002. "Implication of Tenancy Status on Productivity and Efficiency: Evidence from Fiji," Sri Lankan Journal of Agricultural Economics, Sri Lanka Agricultural Economics Association (SAEA), vol. 4, pages 1-20.
    12. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2024. "Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 67(5), pages 2175-2205, November.
    13. Das, Arabinda, 2013. "Estimation of Inefficiency using a Firm-specific Frontier Model," MPRA Paper 46168, University Library of Munich, Germany.
    14. Francisca Pacheco & Rafael Sánchez & Mauricio G. Villena, 2021. "Estimating local government efficiency using a panel data parametric approach: the case of Chilean municipalities," Applied Economics, Taylor & Francis Journals, vol. 53(3), pages 292-314, January.
    15. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    16. Hayatullah Ahmadzai, 2017. "Crop Diversification and Technical Efficiency in Afghanistan: Stochastic Frontier Analysis," Discussion Papers 2017-04, University of Nottingham, CREDIT.
    17. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    18. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    19. Kassem, Mohammad & EL-Moussaw, Chawki i & Awdeh, Ali, 2014. "Measuring the Cost Efficiency of Banks Operating in the MENA Region," MPRA Paper 119125, University Library of Munich, Germany.
    20. Williams, Jonathan, 2004. "Determining management behaviour in European banking," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2427-2460, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:2:p:463-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.