IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i2p404-410.html
   My bibliography  Save this article

When is rounding allowed in integer nonlinear optimization?

Author

Listed:
  • Hübner, Ruth
  • Schöbel, Anita

Abstract

In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.

Suggested Citation

  • Hübner, Ruth & Schöbel, Anita, 2014. "When is rounding allowed in integer nonlinear optimization?," European Journal of Operational Research, Elsevier, vol. 237(2), pages 404-410.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410
    DOI: 10.1016/j.ejor.2014.01.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    2. Jesús A. De Loera & Raymond Hemmecke & Matthias Köppe & Robert Weismantel, 2006. "Integer Polynomial Optimization in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 147-153, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sönke Behrends & Ruth Hübner & Anita Schöbel, 2018. "Norm bounds and underestimators for unconstrained polynomial integer minimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 73-107, February.
    2. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    3. Terzi, Mourad & Ouazene, Yassine & Yalaoui, Alice & Yalaoui, Farouk, 2023. "Lot-sizing and pricing decisions under attraction demand models and multi-channel environment: New efficient formulations," Operations Research Perspectives, Elsevier, vol. 10(C).
    4. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    5. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    6. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    7. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    8. Corazza, Marco & Favaretto, Daniela, 2007. "On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1947-1960, February.
    9. Jin, Tongdan & Tian, Yu, 2012. "Optimizing reliability and service parts logistics for a time-varying installed base," European Journal of Operational Research, Elsevier, vol. 218(1), pages 152-162.
    10. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
    11. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    12. Xiaoling Sun & Duan Li, 2000. "Asymptotic Strong Duality for Bounded Integer Programming: A Logarithmic-Exponential Dual Formulation," Mathematics of Operations Research, INFORMS, vol. 25(4), pages 625-644, November.
    13. Qin, Ruwen & Cudney, Elizabeth A. & Hamzic, Zlatan, 2015. "An optimal plan of zero-defect single-sampling by attributes for incoming inspections in assembly lines," European Journal of Operational Research, Elsevier, vol. 246(3), pages 907-915.
    14. Ruiz, Juan P. & Grossmann, Ignacio E., 2012. "A hierarchy of relaxations for nonlinear convex generalized disjunctive programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 38-47.
    15. Mostafa Parsa & Ali Shahandeh Nookabadi & Zümbül Atan & Yaser Malekian, 2022. "An optimal inventory policy for a multi-echelon closed-loop supply chain of postconsumer recycled content products," Operational Research, Springer, vol. 22(3), pages 1887-1938, July.
    16. Andreas Lundell & Jan Kronqvist, 2022. "Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT," Journal of Global Optimization, Springer, vol. 82(4), pages 863-896, April.
    17. Alexander Murray & Timm Faulwasser & Veit Hagenmeyer & Mario E. Villanueva & Boris Houska, 2021. "Partially distributed outer approximation," Journal of Global Optimization, Springer, vol. 80(3), pages 523-550, July.
    18. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    19. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    20. Maimon, Oded & Dayagi, Arie, 1995. "Nesting planning based on production priorities and technological efficiency," European Journal of Operational Research, Elsevier, vol. 80(1), pages 121-129, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.